Phytochemical And Pharmacological Assesment Of Carica Papaya Seed Extract Revealed That It Shows Neuroprotection Reveses Oxidative Damage And Neutralized Free Radical
Abstract
This study investigates the pharmacological, phytochemical, antioxidant and neuroprotective properties of Carica papaya seed extract, focusing on its potential to combat oxidative stress-related diseases. One of the main causes of the advancement of many chronic illnesses, especially neurological diseases, is oxidative stress. Exploring natural antioxidant sources, such as medicinal plants, is becoming more popular due to the drawbacks of synthetic antioxidants. Carica papaya seeds, traditionally used in various medicinal applications, are known to contain bioactive compounds with potential health benefits. In this study, we performed a comprehensive analysis of the phytochemical composition of the seed extract, evaluated its antioxidant capacity through standard assays, and explored its neuroprotective pharmacological effects. According to the findings, Carica papaya seed extract has strong antioxidant and neuroprotective properties since it contains a variety of bioactive substances, such as terpenoids, phenolic acids, and flavonoids. According to these results, Carica papaya seed extract may be a useful natural source of antioxidants with potential therapeutic uses in the management and prevention of disorders linked to oxidative stress.
References
2. Azeez, T. B., & Lunghar, J. (2021). Antiinflammatory effects of turmeric (Curcuma longa) and ginger (Zingiber officinale). Inflammation and Natural Products, 83-102.
3. Chio, J. C. T., Punjani, N., Hejrati, N., Zavvarian, M. M., Hong, J., & Fehlings, M. G. (2022). Extracellular Matrix and Oxidative Stress Following Traumatic Spinal Cord Injury: Physiological and Pathophysiological Roles and Opportunities for Therapeutic Intervention. Antioxid Redox Signal, 37(1-3), 184-207. doi:10.1089/ars.2021.0120
4. Deore, S. L., Kide, A. A., Baviskar, B. A., Khadabadi, S. S., & Shende, B. A. (2023). Memory Protecting Herbs: Centella asiatica and Bacopa monnieri in the Fight Against Alzheimer's Disease. Revista Brasileira de Farmacognosia, 33(6), 1263-1273.
5. Ebrahimi, S., Soukhtanloo, M., & Mostafavi-Pour, Z. (2023). Anti-tumor effects of Auraptene through induction of apoptosis and oxidative stress in a mouse model of colorectal cancer. Tissue Cell, 81, 102004. doi:10.1016/j.tice.2022.102004
6. Gurib-Fakim, A. (2006). Medicinal plants: traditions of yesterday and drugs of tomorrow. Molecular aspects of Medicine, 27(1), 1-93.
7. Harborne, A. J. (1998). Phytochemical Methods A Guide to Modern Techniques of Plant Analysis: Springer Netherlands.
8. Hassan, W., Noreen, H., Rehman, S., Gul, S., Amjad Kamal, M., Paul Kamdem, J., . . . Bt da Rocha, J. (2017). Oxidative stress and antioxidant potential of one hundred medicinal plants. Current topics in medicinal chemistry, 17(12), 1336-1370.
9. Jafaripour, L., Sohrabi Zadeh, B., Jafaripour, E., Ahmadvand, H., & Asadi-Shekaari, M. (2023). Gallic acid improves liver cirrhosis by reducing oxidative stress and fibrogenesis in the liver of rats induced by bile duct ligation. Scand J Gastroenterol, 58(12), 1474-1483. doi:10.1080/00365521.2023.2229929
10. Jang, E. (2022). Hyperoside as a Potential Natural Product Targeting Oxidative Stress in Liver Diseases. Antioxidants (Basel), 11(8). doi:10.3390/antiox11081437
11. Kang, Q., & Yang, C. (2020). Oxidative stress and diabetic retinopathy: Molecular mechanisms, pathogenetic role and therapeutic implications. Redox Biology, 37, 101799.
12. Malvi, R., Jain, S., Khatri, S., Patel, A., & Mishra, S. (2011). A review on antidiabetic medicinal plants and marketed herbal formulations. Int J Pharm Biol Arch, 2, 1344-1355.
13. Monageng, E., Offor, U., Takalani, N. B., Mohlala, K., & Opuwari, C. S. (2023). A Review on the Impact of Oxidative Stress and Medicinal Plants on Leydig Cells. Antioxidants (Basel), 12(8). doi:10.3390/antiox12081559
14. Ovia, M., Yasasve, M., & Ansel Vishal, L. (2021). Role of Indian Herbal Medicine in the Treatment of Pulmonary Diseases. Medicinal Plants for Lung Diseases: A Pharmacological and Immunological Perspective, 85-102.
15. Petrovska, B. B. (2012). Historical review of medicinal plants’ usage. Pharmacognosy reviews, 6(11), 1.
16. Pulido, R., Bravo, L., & Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of agricultural and food chemistry, 48(8), 3396-3402.
17. Rajendran, P., Al-Saeedi, F. J., Ammar, R. B., Abdallah, B. M., Ali, E. M., Al Abdulsalam, N. K., . . . Ahmed, E. A. (2024). Geraniol attenuates oxidative stress and neuroinflammation-mediated cognitive impairment in D galactose-induced mouse aging model. Aging (Albany NY), 16(6), 5000-5026. doi:10.18632/aging.205677
18. Ramassamy, C., & Singh, M. (2017). In vitro screening of neuroprotective activity of Indian medicinal plant Withania somnifera. Journal of Nutritional Science, 6, e54. doi:10.1017/jns.2017.48
19. Sarkhel, S. (2014). Ethnobotanical survey of folklore plants used in treatment of snakebite in Paschim Medinipur district, West Bengal. Asian pacific journal of tropical biomedicine, 4(5), 416-420.
20. Sarma Kataki, M., Murugamani, V., Rajkumari, A., Singh Mehra, P., Awasthi, D., & Shankar Yadav, R. (2012). Antioxidant, hepatoprotective, and anthelmintic activities of methanol extract of Urtica dioica L. leaves. Pharmaceutical Crops, 3(1).
21. Shah, B. (2013). Textbook of Pharmacognosy & Phytochemistry: Elsevier India.
22. Shu, P., Mo, J., Li, Z., Li, M., Zhu, W., & Du, Z. (2024). Ferulic acid in synergy with retinol alleviates oxidative injury of HaCaT cells during UVB-induced photoaging. Aging (Albany NY), 16. doi:10.18632/aging.205749
23. Sies, H. (2020). Oxidative stress: Concept and some practical aspects. Antioxidants, 9(9), 852.
24. Thummayot, S., Tocharus, C., Pinkaew, D., Viwatpinyo, K., Sringarm, K., & Tocharus, J. (2014). Neuroprotective effect of purple rice extract and its constituent against amyloid beta-induced neuronal cell death in SK-N-SH cells. Neurotoxicology, 45, 149-158.
25. Thummayot, S., Tocharus, C., Suksamrarn, A., & Tocharus, J. (2016). Neuroprotective effects of cyanidin against Aβ-induced oxidative and ER stress in SK-N-SH cells. Neurochemistry International, 101, 15-21.
26. Voufo, R. A., Kouotou, A. E., Tatah, N. J., TeTo, G., Gueguim, C., Ngondé, C. M. E., . . . Anatole, P. C. (2023). Relation between interleukin-6 concentrations and oxidative status of HIV infected patients with /or at risk of Kaposi disease in Yaounde. Virol J, 20(1), 165. doi:10.1186/s12985-023-02109-9
27. Wang, Y., Cai, Z., Zhan, G., Li, X., Li, S., Wang, X., . . . Luo, A. (2023). Caffeic Acid Phenethyl Ester Suppresses Oxidative Stress and Regulates M1/M2 Microglia Polarization via Sirt6/Nrf2 Pathway to Mitigate Cognitive Impairment in Aged Mice following Anesthesia and Surgery. Antioxidants (Basel), 12(3). doi:10.3390/antiox12030714