A Review Of Oxidative Stress Induced Parkinsonism And The Potentials Of Antioxidants In Treating Parkinson’s Diseases

  • Sanitha M
  • Gomathi Vengatachalam
Keywords: Oxidative stress, Mitochondria, Reactive oxygen species, Neurodegenerative disease, Anti oxidants

Abstract

Parkinson's disease (PD) is brought on by an aberrant build-up of α-synuclein in the substantia nigra (SN) and progressive neurodegeneration of dopaminergic neurones.An imbalance between antioxidants and free radicals in your body causes oxidative stress, which damages cells. Numerous illnesses, including cancer, Parkinson's disease, and Alzheimer's disease are impacted by it. Oxidative stress can be brought on by toxins such as cigarette smoke and pollution. Antioxidant-rich foods can aid in its reduction. Numerous proteins, including α-synuclein and amyloid β, as well as signalling pathways, including extracellular signal-regulated kinases, phosphoinositide 3-kinase/protein kinase B pathway, and extracellular signal-regulated protein kinases, are closely linked to neural damage and play a critical role in the pathogenesis of neurodegenerative diseases due to oxidative stress. The altered oxidative stress and mitochondrial dysfunctions are the two important cellular stress parameters playing important role in PD pathogenesis.

Author Biographies

Sanitha M

Department of Pharmacology, Vinayaka Mission’s College of Pharmacy, Vinayaka Mission’s Research Foundation (Deemed to be University), Ariyanoor, Salem, Tamilnadu- 636008, India

Gomathi Vengatachalam

Research Scholar, Department of Pharmacology, Vinayaka Mission’s College of Pharmacy, Vinayaka Mission’s Research Foundation (Deemed to be University), Ariyanoor, Salem, Tamilnadu- 636008, India

References

1. Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 17013.
2. Karch AM. Focus on Nursing Pharmacology, 5th ed.Philadelphia: Lippincott Williams & Wilkins; 2009.
3. Yuan, H., Zhang, Z.W., Liang, L.W., Shen, Q., Wang, X.D., Ren, S.M., Ma, H.J., Jiao, S.J., Liu, P., 2010. Treatment strategies for Parkinson’s disease. Neurosci. Bull. 26 (1), 66–76.
4. R. Franco, S. Li, H. Rodriguez-Rocha, M. Burns, M.I. Panayiotidis, Molecularmechanisms of pesticide-induced neurotoxicity: relevance to Parkinson’s disease, Chem. Biol. Interact. 188 (2010) 289–300.
5. A. Bose, M.F. Beal, Mitochondrial dysfunction in Parkinson’s disease, J.Neurochem. (2016). D.N. Hauser, T.G. Hastings, Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism, Neurobiol. Dis. 51 (2013)35–42.
6. T. Jiang, Q. Sun, S. Chen, Oxidative stress: a major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease, Prog. Neurobiol. 147 (2016) 1–19.
7. P.P. Michel, E.C. Hirsch, S.P. Hunot, Understanding dopaminergic cell death pathways in Parkinson disease, Neuron 90 (2016) 675–691.
8. T. Ono, K. Isobe, K. Nakada, J.-I. Hayashi, Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria, Nat. Genet. 28 (2001) 272–275
9. Di Pietro, V., Lazzarino, G., Amorini, A.M., Tavazzi, B., D'Urso, S., Longo, S., Vagnozzi, R., Signoretti, S., Clementi, E., Giardina, B., Belli, A., 2014. Neuroglobin expression and oxidant/antioxidant balance after graded traumatic brain injury in the rat. Free Radic Biol Med 69, 258-264.
10. Feuerstein, D., Backes, H., Gramer, M., Takagaki, M., Gabel, P., Kumagai, T., Graf, R., 2015. Regulation of cerebral metabolism during cortical spreading depression. J Cereb Blood Flow Metab.
11. Brieger, K., Schiavone, S., Miller, F.J., Jr., Krause, K.H., 2012. Reactive oxygen species: from health to disease. Swiss Med Wkly 142, w13659.
12. Padurariu, M., Ciobica, A., Hritcu, L., Stoica, B., Bild, W., Stefanescu, C., 2010. Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer's disease. Neurosci Lett 469, 6-10.
13. Smith DG, Cappai R, & Barnham KJ (2007) The redox chemistry of the Alzheimer’s disease amyloid beta peptide. Biochim Biophys Acta, 1768, 1976-1990.
14. Muller FL, Liu Y, & Van Remmen H (2004) Complex III releases superoxide to both sides of the inner mitochondrial membrane. J Biol Chem, 279, 49064-49073.
15. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, & Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 39, 44-84.
16. Henrich, M.T.; Oertel, W.H.; Surmeier, D.J.; Geibl, F.F. Mitochondrial Dysfunction in Parkinson’s Disease—A Key Disease Hallmark with Therapeutic Potential. Mol. Neurodegener. 2023, 18, 83.
17. Li, J.-L.; Lin, T.-Y.; Chen, P.-L.; Guo, T.-N.; Huang, S.-Y.; Chen, C.-H.; Lin, C.-H.; Chan, C.-C. Mitochondrial Function and Parkinson’s Disease: From the Perspective of the Electron Transport Chain. Front. Mol. Neurosci. 2021, 14, 797833
18. Klivenyi P, vecsei L: Pharmacological models of Parkinson's disease in rodents. Methods Mol Biol, 2011, 793: 211-227;.
19. Penttinen AM, Suleymanova I, Albert K, Anttila J, Voutilainen MH, Airavaara M: Characterization of a new low-dose 6-hydroxydopamine model of Parkinson's disease in rat. J Neurosci Res 2016, 94: 318-328,
20. S. B. Berman and T. G. Hastings, “Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease,” Journal of Neurochemistry, 1999.vol. 73, pp. 1127–1137.
21. M. E. Götz, A. Gerstner, R. Harth et al., “Altered redox state of platelet coenzyme Q10 in Parkinson’s disease,” Journal of Neural Transmission, vol. 107, no. 1, pp. 41–48, 2000
22. El Ridi, R.; Tallima, H. Physiological functions and pathogenic potential of uric acid: A review. J. Adv. Res. 2017, 8, 487–493.
23. Cipriani, S.; Desjardins, C.A.; Burdett, T.C.; Xu, Y.; Xu, K.; Schwarzschild, M.A. Urate and its transgenic depletion modulate neuronal vulnerability in a cellular model of Parkinson’s disease. PLoS ONE 2012, 7, e37331.
24. Cipriani, S.; Desjardins, C.A.; Burdett, T.C.; Xu, Y.; Xu, K.; Schwarzschild, M.A. Protection of dopaminergic cells by urate requires its accumulation in astrocytes. J. Neurochem. 2012, 123, 172–181.
25. Chen, X.; Burdett, T.C.; Desjardins, C.A.; Logan, R.; Cipriani, S.; Xu, Y.; Schwarzschild, M.A. Disrupted and transgenic urate oxidase alter urate and dopaminergic neurodegeneration. Proc. Natl. Acad. Sci. USA 2013, 110, 300–305.
26. Gong, L.; Zhang, Q.L.; Zhang, N.; Hua, W.Y.; Huang, Y.X.; Di, P.W.; Huang, T.; Xu, X.S.; Liu, C.F.; Hu, L.F.; et al. Neuroprotection by urate on 6-OHDA-lesioned rat model of Parkinson’s disease: Linking to Akt/GSK3beta signaling pathway. J. Neurochem. 2012, 123, 876–885
27. Ascherio, A.; LeWitt, P.A.; Xu, K.; Eberly, S.; Watts, A.; Matson, W.R.; Marras, C.; Kieburtz, K.; Rudolph, A.; Bogdanov, M.B.; et al. Urate as a predictor of the rate of clinical decline in Parkinson disease. Arch. Neurol. 2009, 66, 1460–1468.
28. Schwarzschild, M.A.; Schwid, S.R.; Marek, K.; Watts, A.; Lang, A.E.; Oakes, D.; Shoulson, I.; Ascherio, A.; Parkinson Study Group, P.I.; Hyson, C.; et al. Serum urate as a predictor of clinical and radiographic progression in Parkinson disease. Arch. Neurol. 2008, 65, 716–723.
29. Wang, X.J.; Luo, W.F.; Wang, L.J.; Mao, C.J.; Wang, L.; Liu, C.F. Study on uric acid and the related factors associated with cognition in the patients with Parkinson’s disease. Zhonghua Yi Xue Za Zhi 2009, 89, 1633–1635.
30. Tieu, K.; Zuo, D.M.; Yu, P.H. Differential effects of staurosporine and retinoic acid on the vulnerability of the SH-SY5Y neuroblastoma cells: Involvement of bcl-2 and p53 proteins. J. Neurosci. Res. 1999, 58, 426–435.
31. Cheung, Y.T.; Lau, W.K.; Yu, M.S.; Lai, C.S.; Yeung, S.C.; So, K.F.; Chang, R.C. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 2009, 30,127–135.
32. Katsuki, H.; Kurimoto, E.; Takemori, S.; Kurauchi, Y.; Hisatsune, A.; Isohama, Y.; Izumi, Y.; Kume, T.; Shudo, K.; Akaike, A. Retinoic acid receptor stimulation protects midbrain dopaminergic neurons from inflammatory degeneration via BDNF-mediated signaling. J. Neurochem. 2009, 110, 707–718.
33. Foy, C.J.; Passmore, A.P.; Vahidassr, M.D.; Young, I.S.; Lawson, J.T. Plasma chain-breaking antioxidants in Alzheimer’s disease, vascular dementia and Parkinson’s disease. QJM 1999, 92, 39–45. 170. Kim, J.H.; Hwang, J.; Shim, E.; Chung, E.J.; Jang, S.H.; Koh, S.B. Association of serum carotenoid, retinol, and tocopherol concentrations with the progression of Parkinson’s Disease. Nutr. Res. Pract. 2017, 11, 114–120.
34. Chen, C.M.; Liu, J.L.; Wu, Y.R.; Chen, Y.C.; Cheng, H.S.; Cheng, M.L.; Chiu, D.T. Increased oxidative damage in peripheral blood correlates with severity of Parkinson’s disease. Neurobiol. Dis. 2009, 33, 429–435.
35. Federico, A.; Battisti, C.; Formichi, P.; Dotti, M.T. Plasma levels of vitamin E in Parkinson’s disease. J. Neural.Transm. Suppl. 1995, 45, 267–270. [PubMed]
36. N icoletti, G.; Crescibene, L.; Scornaienchi, M.; Bastone, L.; Bagala, A.; Napoli, I.D.; Caracciolo, M.;Quattrone, A. Plasma levels of vitamin E in Parkinson’s disease. Arch. Gerontol. Geriatr. 2001, 33,7–12.
37. Ahlskog, J.E.; Uitti, R.J.; Low, P.A.; Tyce, G.M.; Nickander, K.K.; Petersen, R.C.; Kokmen, E. No evidence for systemic oxidant stress in Parkinson’s or Alzheimer’s disease. Mov. Disord. 1995, 10, 566–573.
38. Fernandez-Calle, P.; Molina, J.A.; Jimenez-Jimenez, F.J.; Vazquez, A.; Pondal, M.; Garcia-Ruiz, P.J.; Urra, D.G.;Domingo, J.; Codoceo, R. Serum levels of alpha-tocopherol (vitamin E) in Parkinson’s disease. Neurology 1992, 42, 1064–1066.
39. ghodaro, O.M.; Akinloye, O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J. Med. 2019, 54, 287–293.
40. Abraham, S.; Soundararajan, C.C.; Vivekanandhan, S.; Behari, M. Erythrocyte antioxidant enzymes in Parkinson’s disease. Indian J. Med. Res. 2005, 121, 111–115.
41. Kilinç, A.; Yalçin, A.S.; Yalçin, D.; Taga, Y.; Emerk, K. Increased erythrocyte susceptibility to lipid peroxidation in human Parkinson’s disease. Neurosci. Lett. 1988, 87, 307–310.
42. Poirier, J.; Barbeau, A. Erythrocyte antioxidant activity in human patients with Parkinson’s disease. Neurosci. Lett. 1987, 75, 345–348.
43. Gokce Cokal, B.; Yurtdas, M.; Keskin Guler, S.; Gunes, H.N.; Atac Ucar, C.; Aytac, B.; Durak, Z.E.; Yoldas, T.K. Durak, I.; Cubukcu, H.C. Serum glutathione peroxidase, xanthine oxidase, and superoxide dismutase activities and malondialdehyde levels in patients with Parkinson’s disease. Neurol. Sci. 2017, 38, 425–431.
44. Kalra, J.; Rajput, A.H.; Mantha, S.V.; Prasad, K. Serum antioxidant enzyme activity in Parkinson’s disease. Mol. Cell. Biochem. 1992, 110, 165–168.
45. Baillet, A.; Chanteperdrix, V.; Trocmé, C.; Casez, P.; Garrel, C.; Besson, G. The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson’s disease. Neurochem. Res. 2010, 35, 1530–1537.
46. Sharma, A.; Kaur, P.; Kumar, B.; Prabhakar, S.; Gill, K.D. Plasma lipid peroxidation and antioxidant status of Parkinson’s disease patients in the Indian population. Parkinsonism Relat. Disord. 2008, 14, 52–57
47. Miean, K.H.; Mohamed, S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J. Agric. Food Chem. 2001, 49, 3106–3112.
48. Li, S.; Pu, X.P. Neuroprotective effect of kaempferol against a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson’s disease. Biol. Pharm. Bull. 2011, 34, 1291–1296.
49. Kiasalari, Z.; Khalili, M.; Baluchnejadmojarad, T.; Roghani, M. Protective effect of oral hesperetin against unilateral striatal 6-hydroxydopamine damage in the rat. Neurochem. Res. 2016, 41, 1065–1072
50. J. H. Wei, M. Du, and Y. H. Bai, “Correlations of melatonin and glutathione levels with oxidative stress mechanism in Parkinson’s disease,” Acta Academiae Medicinae Sinicae, vol. 41, no. 2, pp. 183–187, 2019.
51. M. A. Zampol and M. H. Barros, “Melatonin improves survival and respiratory activity of yeast cells challenged by alpha-synuclein and menadione,” Yeast, vol. 35, no. 3, pp. 281–290, 2018.
52. G. Patki and Y. S. Lau, “Melatonin protects against neurobehavioral and mitochondrial deficits in a chronic mouse model of Parkinson’s disease,” Pharmacology Biochemistry and Behavior, vol. 99, no. 4, pp. 704–711, 2011.
53. M. Ebadi, P. Govitrapong, S. Sharma, D. Muralikrishnan,S. Shavali, and L. Pellett, “Ubiquinone (coenzyme q10) and mitochondria in oxidative stress of Parkinson’s disease,” Neurosignals, vol. 10, no. 3-4, pp. 224–253, 2001.
54. R. A. Bonakdar and E. Guarneri, “Coenzyme Q10,” American Family Physician, vol. 72, no. 6, pp. 1065–1070, 2005.
55. K. S. Echtay, D. Roussel, J. St-Pierre, M. B. Jekabsons,S. Cadenas, and J. A. Stuart, “Superoxide activates mitochondrial uncoupling proteins,” Nature, vol. 415, no. 6867, pp. 96–99, 2002.
56. R. T. Matthews, L. Yang, S. Browne, M. Baik, and M. F. Beal,“Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects,” Proceedings of the National Academy of Sciences, vol. 95, no. 15,pp. 8892–8897, 1998.
57. A. A. Abdin and H. E. Hamouda, “Mechanism of the neuroprotective role of coenzyme Q10 with or without L-dopa in rotenone-induced parkinsonism,” Neuropharmacology,vol. 55, pp. 1340–1346, 2008.
58. C. Cleren, L. Yang, B. Lorenzo et al., “Therapeutic effects of coenzyme Q10 (CoQ10) and reduced CoQ10 in the MPTP model of parkinsonism,” Journal of Neurochemistry, vol. 104,pp. 113–1621, 2008.
59. M. F. Beal, R. T. Matthews, A. Tieleman, and C. W. Shults,“Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged mice,” Brain Research,vol. 783, no. 1, pp. 109–114, 1998.
60. T. L. Horvath, S. Diano, C. Leranth et al., “Coenzyme Q induces nigral mitochondrial uncoupling and prevents dopamine cell loss in a primate model of Parkinson’s disease,” Endocrinology, vol. 144, no. 7, pp. 2757–2760, 2003.
61. S. K. Sharma, H. El ReFaey, and M. Ebadi, “Complex-1 activity and 18 F-DOPA uptake in genetically engineered mouse model of Parkinson’s disease and the neuroprotective role of coenzyme Q10,” Brain Research Bulletin, vol. 70, pp. 22–32, 2006.
62. The Parkinson’s Study Group QE3, “A randomized clinical trial of high-dosage coenzyme Q10 in early Parkinson disease. No evidence of benefit,” JAMA Neurology, vol. 71, pp. 543–552, 2014.
63. A. Negida, A. Menshawy, G. El Ashal et al., “Coenzyme Q10 for patients with Parkinson’s disease: a systematic review and meta-analysis,” CNS & Neurological Disorders – Drug Targets, vol. 15, pp. 45–53, 2016.
64. M. E. Götz, A. Gerstner, R. Harth et al., “Altered redox state of platelet coenzyme Q10 in Parkinson’s disease,” Journal ofNeural Transmission, vol. 107, no. 1, pp. 41–48, 2000.
Published
2024-09-20
How to Cite
Sanitha M, & Gomathi Vengatachalam. (2024). A Review Of Oxidative Stress Induced Parkinsonism And The Potentials Of Antioxidants In Treating Parkinson’s Diseases. Revista Electronica De Veterinaria, 25(1), 1591 - 1598. https://doi.org/10.69980/redvet.v25i1.908
Section
Articles