Antimicrobial Activity, Physicochemical, And Spectral Analysis Of Rare Earth Metal Complexes Derived From N”-[(Z)-(3-Fluorophenyl)Methylidene]-N”-[(1E,2E)-[Hydroxylamine-1,2-Diphenylidene]Thiocarbohydrazide
Abstract
The biologically active ligand N”-[(Z)-(3-fluorophenyl)methylidene]-N”-[(1E,2E)-[hydroxylamine-1,2-diphenylidene] thiocarbohydrazide (HBMTmFB) was synthesized via a condensation reaction involving α-benzilmonoximethio carbohydrazide and m-fluorobenzaldehyde in the presence of a catalytic quantity of HCl. This HBMTmFB ligand serves as the precursor for the preparation of lanthanide metal complexes. A series of trinuclear lanthanide complexes [Ln(BMTmFB)3] were synthesized, encompassing ten distinct compounds featuring different lanthanide ions such as La(III), Yb(III), Dy(III), Lu(III), Ce(III), Ho(III), Pr(III), Sm(III), Nd(III), and Gd(III). The chemical functionalities of these complexes were extensively characterized using UV-visible and infrared spectroscopy, proton magnetic resonance (PMR) spectroscopy, elemental analysis (C, H, N, S), magnetic susceptibility measurements, and molar conductivity studies. The coordination behavior of HBMTmFB as a tridentate, monobasic ligand was elucidated, with its two oxygen, two sulfur, and nitrogen atoms forming a coordination sphere capable of interacting with metal ions, as confirmed by infrared spectroscopy. Furthermore, the antibacterial activity of the synthesized metal complexes was assessed successfully.
References
2. Ajlouni, A. M., Abu-Salem, Q., Taha, Z. A., Hijazi, A. K., & Al Momani, W. (2016). Synthesis, characterization, biological activities and luminescent properties of lanthanide complexes with [2-thiophenecarboxylic acid, 2-(2-pyridinylmethylene) hydrazide] Schiff bases ligand. Journal of rare earths, 34(10), 986-993.
3. Georgieva, I., Mihaylov, T., & Trendafilova, N. (2014). Lanthanide and transition metal complexes of bioactive coumarins: Molecular modeling and spectroscopic studies. Journal of Inorganic Biochemistry, 135, 100-112.
4. Mishra, N., Kumar, K., Pandey, H., Anand, S. R., Yadav, R., Srivastava, S. P., & Pandey, R. (2020). Synthesis, characterization, optical and anti-bacterial properties of benzothiazole Schiff bases and their lanthanide (III) complexes. Journal of Saudi Chemical Society, 24(12), 925-933.
5. Chundawat, N. S., Jadoun, S., Zarrintaj, P., & Chauhan, N. P. S. (2021). Lanthanide complexes as anticancer agents: A review. Polyhedron, 207, 115387.
6. Staszak, K., Wieszczycka, K., Marturano, V., & Tylkowski, B. (2019). Lanthanides complexes–Chiral sensing of biomolecules. Coordination Chemistry Reviews, 397, 76-90.
7. Mattocks, J. A., & Cotruvo, J. A. (2020). Biological, biomolecular, and bio-inspired strategies for detection, extraction, and separations of lanthanides and actinides. Chemical Society Reviews, 49(22), 8315-8334.
8. Chundawat, N. S., Jadoun, S., Zarrintaj, P., & Chauhan, N. P. S. (2021). Lanthanide complexes as anticancer agents: A review. Polyhedron, 207, 115387.
9. Shahraki, S., Shiri, F., Heidari Majd, M., & Dahmardeh, S. (2019). Anti-cancer study and whey protein complexation of new lanthanum (III) complex with the aim of achieving bioactive anticancer metal-based drugs. Journal of Biomolecular Structure and Dynamics, 37(8), 2072-2085.
10. Chundawat, N. S., Jadoun, S., Zarrintaj, P., & Chauhan, N. P. S. (2021). Lanthanide complexes as anticancer agents: A review. Polyhedron, 207, 115387.
11. Patyal, M., Kaur, K., Bala, N., Gupta, N., & Malik, A. K. (2023). Innovative Lanthanide Complexes: Shaping the future of cancer/tumor Chemotherapy. Journal of Trace Elements in Medicine and Biology, 127277.
12. Gill, M. R., & Vallis, K. A. (2019). Transition metal compounds as cancer radiosensitizers. Chemical Society Reviews, 48(2), 540-557.
13. Wang, L., Zhao, Z., Wei, C., Wei, H., Liu, Z., Bian, Z., & Huang, C. (2019). Review on the electroluminescence study of lanthanide complexes. Advanced Optical Materials, 7(11), 1801256.
14. Matharu, K., Mittal, S. K., & Kumar, S. A. (2011). A novel method for the determination of individual lanthanides using an inexpensive conductometric technique. Analytical Methods, 3(6), 1290-1295.
15. Saunderson, A. (1968). A permanent magnet Gouy balance. Physics Education, 3(5), 272.
16. Saha, N., & Bhattacharyya, D. (1976). Chelates of Cu (II), Ni (II) & Co (II) with 3, 5-Dimethylpyrazole-I-acetic Acid.
17. A. W. Bauer, W. M. M. Kirby, J. C. Sherries, M. Truck, Am. J. Clin. Path. 44 (1966) 493-497.
18. E. Jawetz, J. L. Melnick, E. A. Adelberg., Lange, Medical Pub. 14th ed., California, 1980, p. 123-124.
19. Atta-ur-Rahman, M. I. Choudhary, W. J. Thomsen., Harwood Academic Press, Amsterdam, 1999, p. 12-22.
20. Shebl, M., Khalil, S. M., & Al-Gohani, F. S. (2010). Preparation, spectral characterization and antimicrobial activity of binary and ternary Fe (III), Co (II), Ni (II), Cu (II), Zn (II), Ce (III) and UO2 (VI) complexes of a thiocarbohydrazone ligand. Journal of Molecular Structure, 980(1-3), 78-87.
21. Ferenc, W., Cristóvão, B., & Sarzyński, J. (2013). Magnetic, thermal and spectroscopic properties of lanthanide (III) 2-(4-chlorophenoxy) acetates, Ln (C8H6ClO3) 3• nH2O. Journal of the Serbian Chemical Society, 78(9), 1335-1349.
22. Wei, D. Y., Zheng, Y. Q., & Lin, J. L. (2002). Two Hydroxo Bridged Dinuclear Lanthanide Phen Complexes:[Ln2 (phen) 4 (H2O) 4 (OH) 2](phen) 2 (NO3) 4 with Ln= Tm, Yb. Zeitschrift für Naturforschung B, 57(6), 625-630.
23. Al-Zaidi, B. H., Hasson, M. M., & Ismail, A. H. (2019). New complexes of chelating Schiff base: Synthesis, spectral investigation, antimicrobial, and thermal behavior studies. Journal of Applied Pharmaceutical Science, 9(4), 045-057.
24. Guo, H., Wang, Y., Li, G., Liu, J., Feng, P., & Liu, D. (2017). Cyan emissive super-persistent luminescence and thermoluminescence in BaZrSi 3 O 9: Eu 2+, Pr 3+ phosphors. Journal of Materials Chemistry C, 5(11), 2844-2851.
25. P. Singla, V. Luxami and K. Paul, Eur. J. Med. Chem., 2016, 117, 59
26. Jorgensen, C.K., Prog. Inorg. Chem., 1962, vol. 4, p. 73.
27. Silverstein, R.M., Bassler, G.C., and Morrill, T.C., Spectrometric Identification of Organic Compounds, New York: Wiley, 1981.