A Comprehensive Review Of NLP Techniques In Machine Translation, Sentiment Analysis And Chat-Bots

  • Anindita Chakraborty
  • Dr. Shivnath Ghosh
  • Dr. Binod Kumar
  • Soham Ghosh
  • Jiniyas Biswas
  • Puja Rarhi
Keywords: .

Abstract

paper presents an extensive overview of Natural Language Processing (NLP) methods used in chat-bots, sentiment analysis, and machine translation within the last six decades. We study how approaches have changed over time, from rule-based systems to the newest deep learning models, emphasizing significant advancements and discoveries. Included is a comprehensive table of literature reviews that highlights important advancements in various fields. A review of recent developments, obstacles, and potential paths for NLP research is included in the conclusion of the article.

Author Biographies

Anindita Chakraborty

Department of Computer Science and Engineering

Dr. Shivnath Ghosh

Department of Computer Science and Engineering

Dr. Binod Kumar

Department of Computer Science and Engineering

Soham Ghosh

Department of Computer Science and Engineering

Jiniyas Biswas

Department of Computer Science and Engineering

Puja Rarhi

Department of Cyber Science  & Technology. Brainware University, Ramkrishnapur Road, Barasat, 700125, West Bengal, India.

References

1. Weizenbaum, J. (1966). ELIZA - A Computer Program For the Study of Natural Language Communication Between Man and Machine. Communications of the ACM, 9(1), 36-45.
2. Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., & Mercer, R. L. (1993). The Mathematics of Statistical Machine Translation: Parameter Estimation. Computational Linguistics, 19(2), 263-311.
3. Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs Up?: Sentiment Classification using Machine Learning Techniques. Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing-Volume 10, 79-86.
4. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient Estimation of Word Representations in Vector Space. arXiv preprint arXiv:1301.3781.
5. Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to Sequence Learning with Neural Networks. arXiv preprint arXiv:1409.3215.
6. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is All You Need. Advances in Neural Information Processing Systems, 30.
7. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805.
8. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language Models are Few-Shot Learners. arXiv preprint arXiv:2005.14165.
9. Zhang, L., Wang, S., & Liu, B. (2018). Deep Learning for Sentiment Analysis: A Survey. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), e1253.
10. Tang, D., Qin, B., & Liu, T. (2015). Document Modeling with Gated Recurrent Neural Network for Sentiment Classification. Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, 1422-1432.
11. Och, F. J., & Ney, H. (2003). A Systematic Comparison of Various Statistical Alignment Models. Computational Linguistics, 29(1), 19-51.
12. Johnson, M., Schuster, M., Le, Q. V., Krikun, M., Wu, Y., Chen, Z., ... & Dean, J. (2017). Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation. Transactions of the Association for Computational Linguistics, 5, 339-351.
13. Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to Align and Translate. arXiv preprint arXiv:1409.0473.
14. Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. arXiv preprint arXiv:1408.5882.
15. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language Models are Unsupervised Multitask Learners. OpenAI blog, 1(8).
16. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. arXiv preprint arXiv:1907.11692.
17. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2020). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. Journal of Machine Learning Research, 21(140), 1-67.
18. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2019). XLNet: Generalized Autoregressive Pretraining for Language Understanding. Advances in neural information processing systems, 32.
19. Howard, J., & Ruder, S. (2018). Universal Language Model Fine-tuning for Text Classification. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), 328-339.
20. Lample, G., Conneau, A., Ranzato, M. A., Denoyer, L., & Jégou, H. (2018). Word Translation Without Parallel Data. arXiv preprint arXiv:1710.04087.
21. Li, J., Galley, M., Brockett, C., Gao, J., & Dolan, B. (2015). A Diversity-Promoting Objective Function for Neural Conversation Models. arXiv preprint arXiv:1510.03055.
22. Sun, Z., Yu, H., Song, X., Liu, R., Yang, Y., Zhou, D., & Zhou, J. (2020). MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited Devices. arXiv preprint arXiv:2004.02984.
23. Xu, H., Liu, B., Shu, L., & Yu, P. S. (2019). Bert post-training for review reading comprehension and aspect-based sentiment analysis. arXiv preprint arXiv:1904.02232.
24. Li, J., Monroe, W., & Jurafsky, D. (2016). A Simple, Fast Diverse Decoding Algorithm for Neural Generation. arXiv preprint arXiv:1611.08562.
25. Young, T., Hazarika, D., Poria, S., & Cambria, E. (2018). Recent Trends in Deep Learning Based Natural Language Processing. IEEE Computational Intelligence Magazine, 13(3), 55-75.
Published
2024-07-25
How to Cite
Anindita Chakraborty, Dr. Shivnath Ghosh, Dr. Binod Kumar, Soham Ghosh, Jiniyas Biswas, & Puja Rarhi. (2024). A Comprehensive Review Of NLP Techniques In Machine Translation, Sentiment Analysis And Chat-Bots. Revista Electronica De Veterinaria, 25(1), 1066 -1071. https://doi.org/10.69980/redvet.v25i1.802
Section
Articles