Effective Shielding Materials In High Energy Space Radiation Environment (GCR) For Free Space

  • Kavita Lalwani
  • SreeDevi V.V
  • Amit Yadav
Keywords: GCR, SPE, Deep space, LiH, water,, OLTARIS, Effective dose equivalent.

Abstract

In the demanding environment of deep space, space radiation poses a significant challenge for human space travel. A recent study introduces a multi-layered shielding approach to minimize exposure to trapped radiation, Solar Particle Events (SPE), and Galactic Cosmic Radiation (GCR). The study utilized a range of shielding materials, including aluminum (Al), HDPE, PMMA, LiBH4, water, and LiH. By calculating the dose equivalent (DE) for each shielding material using the On-line Tool for the Assessment of Radiation In Space (OLTARIS) for the 2010 Solar minimum GCR, researchers determined that LiH outperformed other materials in reducing dose. Furthermore, constructing two combinations of multi-layered shielding materials (Al and shield material) with an areal density of 15 g/cm2 led to effective dose measurements. Here combination of Al +LiH provide the reduced dose in the free space of GCR environment.

Author Biographies

Kavita Lalwani

Department of Physics, Malaviya National Institute of Technology Jaipur, India

SreeDevi V.V

Department of Physics, Malaviya National Institute of Technology Jaipur, India

Amit Yadav

Department of Electronics and Communication Engineering, RBS Engineering Technical Campus Agra, India

References

1. Heinbockel, J.H., Slaba, T.C., Tripathi, R.K., Blattnig, S.R., Norbury, J.W., Badavi, F.F., Townsend, L.W., Handler, T., Gabriel, T.A., Pinsky, L.S., Reddell, B., Aumann, A.R., 2011. Comparison of the transport codes HZETRN, HETC and FLUKA for galactic cosmic rays. Advances in Space Research 47, 1089–1105.
2. Wilson, J.W., Miller, J., Konradi, A., Cucinotta, F.A., 1997. Shielding Strategies for Human Space Exploration.
3. Wilson, J.W., Slaba, T.C., Badavi, F.F., Reddell, B.D., Bahadori, A.A., 2015a. 3DHZETRN: Shielded ICRU spherical phantom. Life Sciences in Space Research 4, 46–61. https://doi.org/10.1016/J.LSSR.2015.01.002
4. Norbury, J.W., Schimmerling, W., Slaba, T.C., Azzam, E.I., Badavi, F.F., Baiocco, G., Benton, E., Bindi, V., Blakely, E.A., Blattnig, S.R., Boothman, D.A., Borak, T.B., Britten, R.A., Curtis, S., Dingfelder, M., Durante, M., Dynan, W.S., Eisch, A.J., Robin Elgart, S., Goodhead, D.T., Guida, P.M., Heilbronn, L.H., Hellweg, C.E., Huff, J.L., Kronenberg, A., la Tessa, C., Lowenstein, D.I., Miller, J., Morita, T., Narici, L., Nelson, G.A., Norman, R.B., Ottolenghi, A., Patel, Z.S., Reitz, G., Rusek, A., Schreurs, A.S., Scott-Carnell, L.A., Semones, E., Shay, J.W., Shurshakov, V.A., Sihver, L., Simonsen, L.C., Story, M.D., Turker, M.S., Uchihori, Y., Williams, J., Zeitlin, C.J., 2016. Galactic cosmic ray simulation at the NASA Space Radiation Laboratory. Life Sciences in Space Research 8, 38–51. https://doi.org/10.1016/J.LSSR.2016.02.001
5. Thibeault, S.A., Kang, J.H., Sauti, G., Park, C., Fay, C.C., King, G.C., 2015. Nanomaterials for radiation shielding. MRS Bulletin 40, 836–841. https://doi.org/10.1557/MRS.2015.225
6. Iguchi, D., Ohashi, S., Abarro, G.J.E., Yin, X., Winroth, S., Scott, C., Gleydura, M., Jin, L., Kanagasegar, N., Lo, C., Arza, C.R., Froimowicz, P., Ishida, H., 2018. Development of Hydrogen-Rich Benzoxazine Resins with Low Polymerization Temperature for Space Radiation Shielding. ACS Omega 3, 11569–11581. https://doi.org/10.1021/acsomega.8b01297
7. Mansur, L.K., Frame, B.J., Gallego, N.C., Guetersloh, S.B., Johnson, J.O., Klett, J.W., Townsend, L.W., 2005. Assessment of Shielding Material Performance for Deep Space Missions. Mewaldt, R.A., 1994. Galactic cosmic ray composition and energy spectra. Advances in Space Research 14, 737–747. https://doi.org/10.1016/0273-1177(94)90536-3
8. Thibeault, S.A., Fay, C.C., Sauti, G., Kang, H., Park, C., 2012. Radiation shielding materials containing hydrogen, boron and nitrogen.
9. Thibeault, S.A., Kang, J.H., Sauti, G., Park, C., Fay, C.C., King, G.C., 2015. Nanomaterials for radiation shielding. MRS Bulletin 40, 836–841. https://doi.org/10.1557/MRS.2015.225
10. Iguchi, D., Ohashi, S., Abarro, G.J.E., Yin, X., Winroth, S., Scott, C., Gleydura, M., Jin, L., Kanagasegar, N., Lo, C., Arza, C.R., Froimowicz, P., Ishida, H., 2018. Development of Hydrogen-Rich Benzoxazine Resins with Low Polymerization Temperature for Space Radiation Shielding. ACS Omega 3, 11569–11581. https://doi.org/10.1021/acsomega.8b01297
11. Bond, D.K., Goddard, B., Singleterry, R.C., Bilbao y León, S., 2019. Comparing the Effectiveness of Polymer and Composite Materials to Aluminum for Extended Deep Space Travel. https://doi.org/10.1080/00295450.2019.1681221 206, 1120–1139. https://doi.org/10.1080/00295450.2019.1681221
12. OLTARIS Manual: https://oltaris.larc.nasa.gov/
13. T. C. Slaba and K. Whitman, “The Badhwar-O’Neill 2020 GCR model,” Space Weather 18, e2020SW002456, https://doi.org/10.1029/2020sw002456 (2020).
14. Study the effective dose equivalent, flux, and LET spectra on the surface of Mars, Kavita Lalwani et al, Revista electronica de veterinaria-ISSN 1695-7504, Vol 25, No 1 (2024).
Published
2024-09-04
How to Cite
Kavita Lalwani, SreeDevi V.V, & Amit Yadav. (2024). Effective Shielding Materials In High Energy Space Radiation Environment (GCR) For Free Space. Revista Electronica De Veterinaria, 25(1), 1035 to 1040. https://doi.org/10.69980/redvet.v25i1.795
Section
Articles