Innovations In Nanocarrier Technology For Targeted Therapeutics: A Comprehensive Review
Abstract
Recent advancements in medication delivery systems have brought nanocarriers to the forefront as a groundbreaking technology. Nanocarriers, ranging from 1 to 100 nanometers in size, have revolutionized the targeted delivery of therapeutic agents, such as drugs, genes, and proteins, to specific cells or tissues. This precision addresses one of modern medicine's most significant challenges: optimizing therapeutic efficacy while minimizing adverse effects. Traditional drug delivery methods often struggle with issues like low solubility, rapid degradation, and non-specific distribution, leading to suboptimal treatment outcomes and undesirable side effects. In contrast, nanocarriers offer unparalleled advantages due to their small size and customizable surface properties, enabling them to navigate complex biological environments and selectively interact with target cells. This targeted approach is particularly beneficial in cancer treatment, where precise delivery to tumor cells can significantly enhance treatment effectiveness and reduce harm to healthy tissues. Additionally, nanocarriers can be engineered to release their therapeutic payloads in response to specific biological triggers, further improving their therapeutic potential. As science and technology continue to evolve, the role of nanocarriers in targeted drug delivery is increasingly vital. Their ability to enhance drug solubility, regulate release patterns, and improve targeting precision marks a significant advancement in the pursuit of safer and more effective treatments. Nanocarriers, including nanoparticles, liposomes, carbon nanotubes, niosomes, dendrimers, and polymeric nanoparticles, offer enhanced bioavailability, stability, and organ-specific targeting, making them a superior alternative to conventional therapies, particularly for poorly soluble drugs
References
Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier drug delivery systems: characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics. 2022 Apr 18;14(4):883.
Zeb A, Rana I, Choi HI, Lee CH, Baek SW, Lim CW, Khan N, Arif ST, Sahar NU, Alvi AM, Shah FA. Potential and applications of nanocarriers for efficient delivery of biopharmaceuticals. Pharmaceutics. 2020 Dec 6;12(12):1184.
Vachhani S, Kleinstreuer C. Comparison of micron-and nano-particle transport in the human nasal cavity with a focus on the olfactory region. Computers in Biology and Medicine. 2021 Jan 1;128:104103.
Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. European journal of pharmaceutics and biopharmaceutics. 2008 May 1;69(1):1-9.
Pontes JF, Grenha A. Multifunctional nanocarriers for lung drug delivery. Nanomaterials. 2020 Jan 21;10(2):183.
Pal SL, Jana U, Manna PK, Mohanta GP, Manavalan R. Nanoparticle: An overview of preparation and characterization. Journal of applied pharmaceutical science. 2011 Aug 30(Issue):228-34.
Agrahari V, Burnouf PA, Burnouf T, Agrahari V. Nanoformulation properties, characterization, and behavior in complex biological matrices: Challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Advanced Drug Delivery Reviews. 2019 Aug 1;148:146-80.
Xiong X, Wang Y, Zou W, Duan J, Chen Y. Preparation and characterization of magnetic chitosan microcapsules. Journal of Chemistry. 2013;2013(1):585613.
Sawyer L, Grubb DT, Meyers GF. Polymer microscopy. Springer Science & Business Media; 2008 Dec 24.
Tolentino S, Pereira MN, Cunha-Filho M, Gratieri T, Gelfuso GM. Targeted clindamycin delivery to pilosebaceous units by chitosan or hyaluronic acid nanoparticles for improved topical treatment of acne vulgaris. Carbohydrate Polymers. 2021 Feb 1;253:117295.
Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Molecular pharmaceutics. 2008 Aug 4;5(4):505-15.
Hanafy NA, El-Kemary M, Leporatti S. Micelles structure development as a strategy to improve smart cancer therapy. Cancers. 2018 Jul 20;10(7):238.
Adams ML, Lavasanifar A, Kwon GS. Amphiphilic block copolymers for drug delivery. Journal of pharmaceutical sciences. 2003 Jul 1;92(7):1343-55.
Kamaleddin MA. Nano-ophthalmology: Applications and considerations. Nanomedicine: Nanotechnology, Biology and Medicine. 2017 May 1;13(4):1459-72.
Grimaudo MA, Pescina S, Padula C, Santi P, Concheiro A, Alvarez-Lorenzo C, Nicoli S. Poloxamer 407/TPGS mixed micelles as promising carriers for cyclosporine ocular delivery. Molecular pharmaceutics. 2018 Feb 5;15(2):571-84.
Batrakova EV, Dorodnych TY, Klinskii EY, Kliushnenkova EN, Shemchukova OB, Goncharova ON, Arjakov SA, Alakhov VY, Kabanov AV. Anthracycline antibiotics non-covalently incorporated into the block copolymer micelles: in vivo evaluation of anti-cancer activity. British journal of cancer. 1996 Nov;74(10):1545-52.
Nakanishi T, Fukushima S, Okamoto K, Suzuki M, Matsumura Y, Yokoyama M, Okano T, Sakurai Y, Kataoka K. Development of the polymer micelle carrier system for doxorubicin. Journal of Controlled Release. 2001 Jul 6;74(1-3):295-302.
Al-Tikriti Y, Hansson P. Drug-Induced Phase Separation in Polyelectrolyte Microgels. Gels. 2021 Dec 22;8(1):4.
Censi R, Di Martino P, Vermonden T, Hennink WE. Hydrogels for protein delivery in tissue engineering. Journal of Controlled Release. 2012 Jul 20;161(2):680-92.
Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. polymer. 2008 Apr 15;49(8):1993-2007.
Lu Y, Zhang E, Yang J, Cao Z. Strategies to improve micelle stability for drug delivery. Nano research. 2018 Oct;11:4985-98.
Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water‐soluble drugs. Journal of drug delivery. 2013;2013(1):340315.
Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, Chin SF, Sherry AD, Boothman DA, Gao J. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano letters. 2006 Nov 8;6(11):2427-30.
Hasnain MS, Ahmad SA, Hoda MN, Rishishwar S, Rishishwar P, Nayak AK. Stimuli-responsive carbon nanotubes for targeted drug delivery. InStimuli responsive polymeric nanocarriers for drug delivery applications 2019 Jan 1 (pp. 321-344). Woodhead Publishing.
Biale C, Mussi V, Valbusa U, Visentin S, Viscardi G, Barbero N, Pedemonte N, Galietta L. Carbon nanotubes for targeted drug delivery. In2009 9th Ieee Conference on Nanotechnology (Ieee-Nano) 2009 Jul 26 (pp. 644-646). IEEE.
Liu Z, Tabakman SM, Chen Z, Dai H. Preparation of carbon nanotube bioconjugates for biomedical applications. Nature protocols. 2009 Sep;4(9):1372-81.
Liu Z, Chen K, Davis C, Sherlock S, Cao Q, Chen X, Dai H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer research. 2008 Aug 15;68(16):6652-60.
Zhao K, Shi N, Sa Z, Wang HX, Lu CH, Xu XY. Text mining and analysis of treatise on febrile diseases based on natural language processing. World journal of traditional chinese medicine. 2020 Jan 1;6(1):67-73..
Minelli C, Lowe SB, Stevens MM. Engineering nanocomposite materials for cancer therapy. Small. 2010 Nov 5;6(21):2336-57.
Bianco A, Kostarelos K, Prato M. Applications of carbon nanotubes in drug delivery. Current opinion in chemical biology. 2005 Dec 1;9(6):674-9.
Flores AM, Hosseini-Nassab N, Jarr KU, Ye J, Zhu X, Wirka R, Koh AL, Tsantilas P, Wang Y, Nanda V, Kojima Y. Pro-efferocytic nanoparticles are specifically taken up by lesional macrophages and prevent atherosclerosis. Nature nanotechnology. 2020 Feb;15(2):154-61.
Gonzalez-Carter D, Goode AE, Kiryushko D, Masuda S, Hu S, Lopes-Rodrigues R, Dexter DT, Shaffer MS, Porter AE. Quantification of blood–brain barrier transport and neuronal toxicity of unlabelled multiwalled carbon nanotubes as a function of surface charge. Nanoscale. 2019;11(45):22054-69.
Jelinek R, Jelinek R. Carbon-dot synthesis. Carbon Quantum Dots: Synthesis, Properties and Applications. 2017:5-27.
Lin X, Liang Y, Lu Z, Lou H, Zhang X, Liu S, Zheng B, Liu R, Fu R, Wu D. Mechanochemistry: a green, activation-free and top-down strategy to high-surface-area carbon materials. ACS Sustainable Chemistry & Engineering. 2017 Oct 2;5(10):8535-40.
Wu YF, Wu HC, Kuan CH, Lin CJ, Wang LW, Chang CW, Wang TW. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Scientific reports. 2016 Feb 16;6(1):21170.
Misra SK, Chang HH, Mukherjee P, Tiwari S, Ohoka A, Pan D. Regulating biocompatibility of carbon spheres via defined nanoscale chemistry and a careful selection of surface functionalities. Scientific reports. 2015 Oct 14;5(1):14986.
Yang Q, Wei L, Zheng X, Xiao L. Single particle dynamic imaging and Fe3+ sensing with bright carbon dots derived from bovine serum albumin proteins. Scientific Reports. 2015 Dec 4;5(1):17727.
Jung YK, Shin E, Kim BS. Cell nucleus-targeting zwitterionic carbon dots. Scientific reports. 2015 Dec 22;5(1):18807.
Boakye-Yiadom KO, Kesse S, Opoku-Damoah Y, Filli MS, Aquib M, Joelle MM, Farooq MA, Mavlyanova R, Raza F, Bavi R, Wang B. Carbon dots: Applications in bioimaging and theranostics. International journal of pharmaceutics. 2019 Jun 10;564:308-17.
Zeng Q, Shao D, He X, Ren Z, Ji W, Shan C, Qu S, Li J, Chen L, Li Q. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. Journal of Materials Chemistry B. 2016;4(30):5119-26.
Yuan Y, Guo B, Hao L, Liu N, Lin Y, Guo W, Li X, Gu B. Doxorubicin-loaded environmentally friendly carbon dots as a novel drug delivery system for nucleus targeted cancer therapy. Colloids and Surfaces B: Biointerfaces. 2017 Nov 1;159:349-59.
Kong T, Hao L, Wei Y, Cai X, Zhu B. Doxorubicin conjugated carbon dots as a drug delivery system for human breast cancer therapy. Cell proliferation. 2018 Oct;51(5):e12488.
Hettiarachchi SD, Graham RM, Mintz KJ, Zhou Y, Vanni S, Peng Z, Leblanc RM. Triple conjugated carbon dots as a nano-drug delivery model for glioblastoma brain tumors. Nanoscale. 2019;11(13):6192-205.
Liyanage PY, Zhou Y, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Vanni S, Graham RM, Leblanc RM. Pediatric glioblastoma target-specific efficient delivery of gemcitabine across the blood–brain barrier via carbon nitride dots. Nanoscale. 2020;12(14):7927-38.
Crintea A, Dutu AG, Samasca G, Florian IA, Lupan I, Craciun AM. The nanosystems involved in treating lung cancer. Life. 2021 Jul 13;11(7):682.
Carreiró F, Oliveira AM, Neves A, Pires B, Nagasamy Venkatesh D, Durazzo A, Lucarini M, Eder P, Silva AM, Santini A, Souto EB. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(3731).
Niculescu AG, Grumezescu AM. Applications of chitosan-alginate-based nanoparticles—An up-to-date review. Nanomaterials. 2022 Jan 6;12(2):186.
Simpson JD, Smith SA, Thurecht KJ, Such G. Engineered polymeric materials for biological applications: Overcoming challenges of the bio–nano interface. Polymers. 2019 Sep 2;11(9):1441.
Troy E, Tilbury MA, Power AM, Wall JG. Nature-based biomaterials and their application in biomedicine. Polymers. 2021 Sep 28;13(19):3321.
Kamaly N, Yameen B, Wu J, Farokhzad OC. Degradable controlled-release polymers and polymeric nanoparticles: mechanisms of controlling drug release. Chemical reviews. 2016 Feb 24;116(4):2602-63.
Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin FH, Qoronfleh MW. Therapeutic efficacy of nanoparticles and routes of administration. Biomaterials research. 2019 Nov 21;23(1):20.
Begines B, Ortiz T, Pérez-Aranda M, Martínez G, Merinero M, Argüelles-Arias F, Alcudia A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials. 2020 Jul 19;10(7):1403.
Teleanu DM, Chircov C, Grumezescu AM, Volceanov A, Teleanu RI. Blood-brain delivery methods using nanotechnology. Pharmaceutics. 2018 Dec 11;10(4):269.
Smolensky ED, Park HY, Berquó TS, Pierre VC. Surface functionalization of magnetic iron oxide nanoparticles for MRI applications–effect of anchoring group and ligand exchange protocol. Contrast media & molecular imaging. 2011 Jul;6(4):189-99.
Kale SN, Jadhav AD, Verma S, Koppikar SJ, Kaul-Ghanekar R, Dhole SD, Ogale SB. Characterization of biocompatible NiCo2O4 nanoparticles for applications in hyperthermia and drug delivery. Nanomedicine: Nanotechnology, Biology and Medicine. 2012 May 1;8(4):452-9.
Sayed FN, Jayakumar OD, Sudakar C, Naik R, Tyagi AK. Possible weak ferromagnetism in pure and M (Mn, Cu, Co, Fe and Tb) doped NiGa2O4 nanoparticles. Journal of nanoscience and nanotechnology. 2011 Apr 1;11(4):3363-9.
Grassi-Schultheiss PP, Heller F, Dobson J. Analysis of magnetic material in the human heart, spleen and liver. Biometals. 1997 Dec;10:351-5.
Banerjee IA, Yu L, Shima M, Yoshino T, Takeyama H, Matsunaga T, Matsui H. Magnetic nanotube fabrication by using bacterial magnetic nanocrystals. Advanced Materials. 2005 May 2;17(9):1128-31.
Yadollahpour AL, Rashidi S. Magnetic nanoparticles: a review of chemical and physical characteristics important in medical applications. Orient J Chem. 2015 Nov;31(1):25-30.
Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic materials. 2005 May 1;293(1):483-96.
Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale research letters. 2012 Dec;7:1-3.
Wu W, Wu Z, Yu T, Jiang C, Kim WS. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Science and technology of advanced materials. 2015 Apr 28;16(2):023501.
Lübbe AS, Bergemann C, Riess H, Schriever F, Reichardt P, Possinger K, Matthias M, Dörken B, Herrmann F, Gürtler R, Hohenberger P. Clinical experiences with magnetic drug targeting: a phase I study with 4′-epidoxorubicin in 14 patients with advanced solid tumors. Cancer research. 1996 Oct 15;56(20):4686-93.
Chorny M, Hood E, Levy RJ, Muzykantov VR. Endothelial delivery of antioxidant enzymes loaded into non-polymeric magnetic nanoparticles. Journal of Controlled Release. 2010 Aug 17;146(1):144-51.
Child HW, Del Pino PA, De la Fuente JM, Hursthouse AS, Stirling D, Mullen M, McPhee GM, Nixon C, Jayawarna V, Berry CC. Working together: the combined application of a magnetic field and penetratin for the delivery of magnetic nanoparticles to cells in 3D. ACS nano. 2011 Oct 25;5(10):7910-9.
Fantechi E, Innocenti C, Zanardelli M, Fittipaldi M, Falvo E, Carbo M, Shullani V, Di Cesare Mannelli L, Ghelardini C, Ferretti AM, Ponti A. A smart platform for hyperthermia application in cancer treatment: cobalt-doped ferrite nanoparticles mineralized in human ferritin cages. ACS nano. 2014 May 27;8(5):4705-19.
Mody VV, Cox A, Shah S, Singh A, Bevins W, Parihar H. Magnetic nanoparticle drug delivery systems for targeting tumor. Applied Nanoscience. 2014 Apr;4:385-92.
Yuan J, Xu Y, Müller AH. One-dimensional magnetic inorganic–organic hybrid nanomaterials. Chemical Society Reviews. 2011;40(2):640-55.
Zhang L, Li Y, Jimmy CY, Chen YY, Chan KM. Assembly of polyethylenimine-functionalized iron oxide nanoparticles as agents for DNA transfection with magnetofection technique. Journal of Materials Chemistry B. 2014;2(45):7936-44.
Sercombe L, Veerati T, Moheimani F, Wu SY, Sood AK, Hua S. Advances and challenges of liposome assisted drug delivery. Frontiers in pharmacology. 2015 Dec 1;6:286.
Al-Jamal WT, Kostarelos K. Liposomes: from a clinically established drug delivery system to a nanoparticle platform for theranostic nanomedicine. Accounts of chemical research. 2011 Oct 18;44(10):1094-104.
Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Advanced drug delivery reviews. 2013 Jan 1;65(1):36-48.
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced drug delivery reviews. 2016 Apr 1;99:28-51.
Bozzuto G, Molinari A. Liposomes as nanomedical devices. International journal of nanomedicine. 2015 Feb 2:975-99.
Chis AA, Dobrea C, Morgovan C, Arseniu AM, Rus LL, Butuca A, Juncan AM, Totan M, Vonica-Tincu AL, Cormos G, Muntean AC. Applications and limitations of dendrimers in biomedicine. Molecules. 2020 Sep 1;25(17):3982.
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale research letters. 2013 Dec;8:1-9.
Nakhaei P, Margiana R, Bokov DO, Abdelbasset WK, Jadidi Kouhbanani MA, Varma RS, Marofi F, Jarahian M, Beheshtkhoo N. RETRACTED: Liposomes: Structure, Biomedical Applications, and Stability Parameters With Emphasis on Cholesterol. Frontiers in bioengineering and biotechnology. 2021 Sep 9;9:705886.
Abdelkader H, Alani AW, Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug delivery. 2014 Mar 1;21(2):87-100.
Fobian SF, Cheng Z, Ten Hagen TL. Smart lipid-based nanosystems for therapeutic immune induction against cancers: perspectives and outlooks. Pharmaceutics. 2021 Dec 23;14(1):26.
Riaz MK, Riaz MA, Zhang X, Lin C, Wong KH, Chen X, Zhang G, Lu A, Yang Z. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. International journal of molecular sciences. 2018 Jan 9;19(1):195.
D'Mello SR, Cruz CN, Chen ML, Kapoor M, Lee SL, Tyner KM. The evolving landscape of drug products containing nanomaterials in the United States. Nature nanotechnology. 2017 Jun;12(6):523-9.
Li F, Qin Y, Lee J, Liao H, Wang N, Davis TP, Qiao R, Ling D. Stimuli-responsive nano-assemblies for remotely controlled drug delivery. Journal of Controlled Release. 2020 Jun 10;322:566-92.
MacLachlan I. Antisense Drug Technology: Principles, Strategies, and Applications.
Sur S, Fries AC, Kinzler KW, Zhou S, Vogelstein B. Remote loading of preencapsulated drugs into stealth liposomes. Proceedings of the National Academy of Sciences. 2014 Feb 11;111(6):2283-8.
Brandl M. Vesicular phospholipid gels. Liposomes: Methods and Protocols, Volume 1: Pharmaceutical Nanocarriers. 2010:205-12.
Milan A, Mioc A, Prodea A, Mioc M, Buzatu R, Ghiulai R, Racoviceanu R, Caruntu F, Şoica C. The optimized delivery of triterpenes by liposomal nanoformulations: Overcoming the challenges. International journal of molecular sciences. 2022 Jan 20;23(3):1140.
Bozzuto G, Molinari A. Liposomes as nanomedical devices. International journal of nanomedicine. 2015 Feb 2:975-99.
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale research letters. 2013 Dec;8:1-9.
Gupta U, Perumal O. Dendrimers and its biomedical applications. InNatural and synthetic biomedical polymers 2014 Jan 1 (pp. 243-257). Elsevier.
Madaan K, Kumar S, Poonia N, Lather V, Pandita D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. Journal of Pharmacy and Bioallied Sciences. 2014 Jul 1;6(3):139-50.
Chauhan AS. Dendrimers for drug delivery. Molecules. 2018 Apr 18;23(4):938.
Pan J, Mendes LP, Yao M, Filipczak N, Garai S, Thakur GA, Sarisozen C, Torchilin VP. Polyamidoamine dendrimers-based nanomedicine for combination therapy with siRNA and chemotherapeutics to overcome multidrug resistance. European Journal of Pharmaceutics and Biopharmaceutics. 2019 Mar 1;136:18-28.
Li L, Wang J, Kong H, Zeng Y, Liu G. Functional biomimetic nanoparticles for drug delivery and theranostic applications in cancer treatment. Science and technology of advanced materials. 2018 Dec 31;19(1):771-90.
Wang X, Wang Y, Chen ZG, Shin DM. Advances of cancer therapy by nanotechnology. Cancer research and treatment: official journal of Korean Cancer Association. 2009 Mar 31;41(1):1-1.
Luo Y, Yin X, Yin X, Chen A, Zhao L, Zhang G, Liao W, Huang X, Li J, Zhang CY. Dual pH/redox-responsive mixed polymeric micelles for anticancer drug delivery and controlled release. Pharmaceutics. 2019 Apr 11;11(4):176.
Sharma AK, Gothwal A, Kesharwani P, Alsaab H, Iyer AK, Gupta U. Dendrimer nanoarchitectures for cancer diagnosis and anticancer drug delivery. Drug Discovery Today. 2017 Feb 1;22(2):314-26.
Akhtar K, Khan SA, Khan SB, Asiri AM. Scanning electron microscopy: Principle and applications in nanomaterials characterization. Springer International Publishing; 2018.
Bogner A, Thollet G, Basset D, Jouneau PH, Gauthier C. Wet STEM: A new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy. 2005 Oct 1;104(3-4):290-301.
Xu F, Zhao T, Wang S, Liu S, Yang T, Li Z, Wang H, Cui X. Preparation of magnetic and pH-responsive chitosan microcapsules via sonochemical method. Journal of Microencapsulation. 2016 Feb 17;33(2):191-8.
Hoesli CA, Kiang RL, Mocinecová D, Speck M, Mošková DJ, Donald‐Hague C, Lacík I, Kieffer TJ, Piret JM. Reversal of diabetes by βTC3 cells encapsulated in alginate beads generated by emulsion and internal gelation. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2012 May;100(4):1017-28.
Xiong X, Wang Y, Zou W, Duan J, Chen Y. Preparation and characterization of magnetic chitosan microcapsules. Journal of Chemistry. 2013;2013(1):585613.
Pascucci L, Scattini G. Imaging extracelluar vesicles by transmission electron microscopy: Coping with technical hurdles and morphological interpretation. Biochimica et Biophysica Acta (BBA)-General Subjects. 2021 Apr 1;1865(4):129648.
Chen L, Subirade M. Chitosan/β-lactoglobulin core–shell nanoparticles as nutraceutical carriers. Biomaterials. 2005 Oct 1;26(30):6041-53.
Alam MI, Baboota S, Ahuja A, Ali M, Ali J, Sahni JK, Bhatnagar A. Pharmacoscintigraphic evaluation of potential of lipid nanocarriers for nose-to-brain delivery of antidepressant drug. International journal of pharmaceutics. 2014 Aug 15;470(1-2):99-106.
Shi HG, Farber L, Michaels JN, Dickey A, Thompson KC, Shelukar SD, Hurter PN, Reynolds SD, Kaufman MJ. Characterization of crystalline drug nanoparticles using atomic force microscopy and complementary techniques. Pharmaceutical research. 2003 Mar;20:479-84.
Agrahari V, Burnouf PA, Burnouf T, Agrahari V. Nanoformulation properties, characterization, and behavior in complex biological matrices: Challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Advanced Drug Delivery Reviews. 2019 Aug 1;148:146-80.
Sitterberg J, Özcetin A, Ehrhardt C, Bakowsky U. Utilising atomic force microscopy for the characterisation of nanoscale drug delivery systems. European Journal of Pharmaceutics and Biopharmaceutics. 2010 Jan 1;74(1):2-13.
Hinterdorfer P, Dufrêne YF. Detection and localization of single molecular recognition events using atomic force microscopy. Nature methods. 2006 May;3(5):347-55.
Fan X, Zheng W, Singh DJ. Light scattering and surface plasmons on small spherical particles. Light: Science & Applications. 2014 Jun;3(6):e179-.
Ross DJ, Sigel R. Mie scattering by soft core-shell particles and its applications to ellipsometric light scattering. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics. 2012 May;85(5):056710.
Ramirez LM, Rihouey C, Chaubet F, Le Cerf D, Picton L. Characterization of dextran particle size: How frit-inlet asymmetrical flow field-flow fractionation (FI-AF4) coupled online with dynamic light scattering (DLS) leads to enhanced size distribution. Journal of Chromatography A. 2021 Sep 13;1653:462404.
Duval C, Le Cerf D, Picton L, Muller G. Aggregation of amphiphilic pullulan derivatives evidenced by on-line flow field flow fractionation/multi-angle laser light scattering. Journal of Chromatography B: Biomedical Sciences and Applications. 2001 Mar 25;753(1):115-22.
Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. European journal of pharmaceutics and biopharmaceutics. 2008 May 1;69(1):1-9.
Ramirez LM, Gobin E, Aid-Launais R, Journe C, Moraes FC, Picton L, Le Cerf D, Letourneur D, Chauvierre C, Chaubet F. Gd (DOTA)-grafted submicronic polysaccharide-based particles functionalized with fucoidan as potential MR contrast agent able to target human activated platelets. Carbohydrate Polymers. 2020 Oct 1;245:116457.
Agrahari V, Burnouf PA, Burnouf T, Agrahari V. Nanoformulation properties, characterization, and behavior in complex biological matrices: Challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Advanced Drug Delivery Reviews. 2019 Aug 1;148:146-80.
Krpetic Z, Singh I, Su W, Guerrini L, Faulds K, Burley GA, Graham D. Directed assembly of DNA-functionalized gold nanoparticles using pyrrole–imidazole polyamides. Journal of the American Chemical Society. 2012 May 23;134(20):8356-9..
Alshawwa SZ, Kassem AA, Farid RM, Mostafa SK, Labib GS. Nanocarrier drug delivery systems: characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics. 2022 Apr 18;14(4):883.
Kestens V, Coleman VA, De Temmerman PJ, Minelli C, Woehlecke H, Roebben G. Improved metrological traceability of particle size values measured with line-start incremental centrifugal liquid sedimentation. Langmuir. 2017 Aug 22;33(33):8213-24.
Braun A, Couteau O, Franks K, Kestens V, Roebben G, Lamberty A, Linsinger TP. Validation of dynamic light scattering and centrifugal liquid sedimentation methods for nanoparticle characterisation. Advanced Powder Technology. 2011 Nov 1;22(6):766-70.
Braun A, Couteau O, Franks K, Kestens V, Roebben G, Lamberty A, Linsinger TP. Validation of dynamic light scattering and centrifugal liquid sedimentation methods for nanoparticle characterisation. Advanced Powder Technology. 2011 Nov 1;22(6):766-70.
Zellnitz S, Zellnitz L, Müller MT, Meindl C, Schröttner H, Fröhlich E. Impact of drug particle shape on permeability and cellular uptake in the lung. European Journal of Pharmaceutical Sciences. 2019 Nov 1;139:105065.
Neubert RH. Potentials of new nanocarriers for dermal and transdermal drug delivery.
European journal of pharmaceutics and biopharmaceutics. 2011 Jan 1;77(1):1-2.
• Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y. Engineered nanoparticles for drug
delivery in cancer therapy. Nanomaterials and Neoplasms. 2021 Jul 22:31-142.
• Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs
encapsulated in solid lipid nanoparticles. Advanced drug delivery reviews. 2007 Jul
10;59(6):491-504.
• Wang AZ, Langer R, Farokhzad OC. Nanoparticle delivery of cancer drugs. Annual
review of medicine. 2012 Feb 18;63(1):185-98.
• Zhu Y, Liao L. Applications of nanoparticles for anticancer drug delivery: a review.
Journal of nanoscience and nanotechnology. 2015 Jul 1;15(7):4753-73.
• Patel MN, Lakkadwala S, Majrad MS, Injeti ER, Gollmer SM, Shah ZA, Boddu SH,
Nesamony J. Characterization and evaluation of 5-fluorouracil-loaded solid lipid
nanoparticles prepared via a temperature-modulated solidification technique. Aaps
Pharmscitech. 2014 Dec;15:1498-508.
Hossen S, Hossain MK, Basher MK, Mia MN, Rahman MT, Uddin MJ. Smart nanocarrier-based
drug delivery systems for cancer therapy and toxicity studies: A review. Journal of advanced
research. 2019 Jan 1;15:1-8.
2. Hsu CY, Rheima AM, Kadhim MM, Ahmed NN, Mohammed SH, Abbas FH, Abed ZT, Mahdi ZM,
Abbas ZS, Hachim SK, Ali FK. An overview of nanoparticles in drug delivery: properties and
applications. South African Journal of Chemical Engineering. 2023 Aug 22.
3. Abdelbasset WK, Jasim SA, Bokov DO, Oleneva MS, Islamov A, Hammid AT, Mustafa YF, Yasin
G, Alguno AC, Kianfar E. Comparison and evaluation of the performance of graphene-based
biosensors. Carbon Letters. 2022 Jun 1;32(4).
4. Abderrahmane A, Jamshed W, Abed AM, Smaisim GF, Guedri K, Akbari OA, Younis O, Baghaei
S. Heat and mass transfer analysis of non-Newtonian power-law nanofluid confined within
annulus enclosure using Darcy-Brinkman-Forchheimer model. Case Studies in Thermal
Engineering. 2022 Dec 1;40:102569.
5. Abderrahmane A, Mourad A, Mohammed S, Smaisim GF, Toghraie D, Koulali A, Guedri K,
Younis O. Second law analysis of a 3D magnetic buoyancy-driven flow of hybrid nanofluid inside
a wavy cubical cavity partially filled with porous layer and non-Newtonian layer. Annals of Nuclear
Energy. 2023 Feb 1;181:109511.
6. AbdulHussein WA, Abed AM, Mohammed DB, Smaisim GF, Baghaei S. Investigation of boiling
process of different fluids in microchannels and nanochannels in the presence of external electric
field and external magnetic field using molecular dynamics simulation. Case Studies in Thermal
Engineering. 2022 Jul 1;35:102105.
7. Abdul-Reda Hussein U, Mahmoud ZH, Alaziz KA, Alid ML, Yasin Y, Ali FK, Faisal AN, Abd AN,
Kianfar E. Antimicrobial finishing of textiles using nanomaterials. Brazilian Journal of Biology.