Chrysin-Loaded Snedds: A Novel Approach To Boost Bioavailability Performance
Abstract
Chrysin, a natural flavonoid found in propolis, honey, and some plants, has potential uses in medicine because to its anti-inflammatory, neuroprotective, antioxidant, anti-cancer, and anxiolytic characteristics. However, its poor solubility and bioavailability pose issues that necessitate effective delivery strategies. Drug delivery systems (DDS) including liposomes, transdermal patches, and nanoparticles may boost bioavailability and limit unwanted effects. SNEDDS, a mixture of oils, surfactants, and co-surfactants, form nano-sized emulsions in the gastrointestinal system to increase medicine absorption. This research investigates the development of SNEDDS for chrysin, concentrating on formulation optimization, in vitro drug release assessment, and solubility augmentation. The best excipients were identified using pseudo-ternary phase diagrams, Tween 80, and PEG 400, and solubility tests were undertaken. Four formulations (F1–F4) were produced and tested using a 22-factorial design. Zeta potential studies proved the stability of the nanoemulsions, and Fourier Transform Infrared (FT-IR) analysis indicated no chemical interaction between the excipients and the chrysin. The revised chrysin SNEDDS formulation, F4, displayed better drug release, bioavailability, and stability, making it a feasible choice for future investigation and improvement in oral drug delivery systems. SNEDDS offer a realistic technique for overcoming chrysin's solubility and bioavailability difficulties, with F4 formulation showing the greatest potential for medicinal application.
References
2. Balam, F. H.; Ahmadi, Z. S.; Ghorbani, A. Inhibitory effect of chrysin on estrogen biosynthesis by suppression of enzyme aromatase (CYP19): A systematic review. Heliyon 2020, 6 (3), e03557. https://doi.org/10.1016/j.heliyon.2020.e03557.
3. Mucha, P.; Skoczyńska, A.; Małecka, M.; Hikisz, P.; Budzisz, E. Overview of the Antioxidant and Anti-Inflammatory activities of selected plant compounds and their metal ions complexes. Molecules 2021, 26 (16), 4886. https://doi.org/10.3390/molecules26164886.
4. Khan, A. W.; Kotta, S.; Ansari, S. H.; Sharma, R. K.; Ali, J. Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: design, characterization,in vitroandin vivoevaluation. Drug Delivery 2014, 22 (4), 552–561. https://doi.org/10.3109/10717544.2013.878003.
5. Souto, E. B.; Cano, A.; Martins-Gomes, C.; Coutinho, T. E.; Zielińska, A.; Silva, A. M. Microemulsions and nanoemulsions in skin drug delivery. Bioengineering 2022, 9 (4), 158. https://doi.org/10.3390/bioengineering9040158.
6. Sohrabi, S.; Kassir, N.; Moraveji, M. K. Droplet microfluidics: fundamentals and its advanced applications. RSC Advances 2020, 10 (46), 27560–27574. https://doi.org/10.1039/d0ra04566g.
7. Buya, A. B.; Beloqui, A.; Memvanga, P. B.; Préat, V. Self-Nano-Emulsifying Drug-Delivery Systems: From the development to the current applications and challenges in oral drug delivery. Pharmaceutics 2020, 12 (12), 1194. https://doi.org/10.3390/pharmaceutics12121194.
8. Shukla, E.; Kara, D. D.; Katikala, T.; Rathnanand, M. Self-nanoemulsifying drug delivery systems (SNEDDS) of anti-cancer drugs: a multifaceted nanoplatform for the enhancement of oral bioavailability. Drug Development and Industrial Pharmacy 2023, 49 (1), 1–16. https://doi.org/10.1080/03639045.2023.2182124.
9. Fox, C. B.; Kim, J.; Le, L. V.; Nemeth, C. L.; Chirra, H. D.; Desai, T. A. Micro/nanofabricated platforms for oral drug delivery. Journal of Controlled Release 219, 431–444. https://doi.org/10.1016/j.jconrel.2015.07.033.
10. Meerveld, B. G.-V.; Johnson, A. C.; Grundy, D. Gastrointestinal physiology and function. Handbook of Experimental Pharmacology 2017, 1–16. https://doi.org/10.1007/164_2016_118.
11. Targhotra, M.; Chauhan, M. K. An overview on various approaches and recent patents on buccal drug delivery systems. Current Pharmaceutical Design 2020, 26 (39), 5030–5039. https://doi.org/10.2174/1381612826666200614182013.
12. Hua, S.; Marks, E.; Schneider, J. J.; Keely, S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: Selective targeting to diseased versus healthy tissue. Nanomedicine Nanotechnology Biology and Medicine 2015, 11 (5), 1117–1132. https://doi.org/10.1016/j.nano.2015.02.018.
13. Batchelor, H. Bioadhesive dosage forms for esophageal drug delivery. Pharmaceutical Research 2005, 22 (2), 175–181. https://doi.org/10.1007/s11095-004-1183-5.
14. Zhang, L.; Russell, D.; Conway, B. R.; Batchelor, H. Strategies and therapeutic opportunities for the delivery of drugs to the esophagus. Critical Reviews in Therapeutic Drug Carrier Systems 2008, 25 (3), 259–304. https://doi.org/10.1615/critrevtherdrugcarriersyst.v25.i3.20.
15. Yoshida, T.; Lai, T. C.; Kwon, G. S.; Sako, K. pH- and ion-sensitive polymers for drug delivery. Expert Opinion on Drug Delivery 2013, 10 (11), 1497–1513. https://doi.org/10.1517/17425247.2013.821978.
16. Ensign, L. M.; Cone, R.; Hanes, J. Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers. Advanced Drug Delivery Reviews 2012, 64 (6), 557–570. https://doi.org/10.1016/j.addr.2011.12.009.
17. Bagan, J.; Paderni, C.; Termine, N.; Campisi, G.; Lo Russo, L.; Compilato, D.; Di Fede, O. Mucoadhesive Polymers for Oral Transmucosal Drug delivery: A review. Current Pharmaceutical Design 2012, 18 (34), 5497–5514. https://doi.org/10.2174/138161212803307545.
18. Drucker, D. J. Advances in oral peptide therapeutics. Nature Reviews Drug Discovery 2019, 19 (4), 277–289. https://doi.org/10.1038/s41573-019-0053-0.
19. Lim, Y. F.; Williams, M. a. K.; Lentle, R. G.; Janssen, P. W. M.; Mansel, B. W.; Keen, S. a. J.; Chambers, P. An exploration of the microrheological environment around the distal ileal villi and proximal colonic mucosa of the possum ( Trichosurus vulpecula ). Journal of the Royal Society Interface 2013, 10 (81), 20121008. https://doi.org/10.1098/rsif.2012.1008.
20. Wang, Y.; Pi, C.; Feng, X.; Hou, Y.; Zhao, L.; Wei, Y.
The Influence of Nanoparticle Properties on Oral Bioavailability of Drugs
International Journal of Nanomedicine 2020, Volume 15, 6295–6310. https://doi.org/10.2147/ijn.s257269.21. Coffey, J. W.; Gaiha, G. D.; Traverso, G. Oral biologic delivery: advances toward oral subunit, DNA, and mRNA vaccines and the potential for mass vaccination during pandemics. The Annual Review of Pharmacology and Toxicology 2021, 61 (1), 517–540. https://doi.org/10.1146/annurev-pharmtox-030320-092348.
22. Mowat, A. M.; Agace, W. W. Regional specialization within the intestinal immune system. Nature Reviews. Immunology 2014, 14 (10), 667–685. https://doi.org/10.1038/nri3738.
23. Amidon, S.; Brown, J. E.; Dave, V. S. Colon-Targeted Oral Drug Delivery Systems: design Trends and Approaches. AAPS PharmSciTech 2015, 16 (4), 731–741. https://doi.org/10.1208/s12249-015-0350-9.
24. Philip, A. K.; Philip, B. Colon Targeted Drug Delivery Systems: A review on Primary and Novel Approaches. Oman Medical Journal 2010, 25 (2), 70–78. https://doi.org/10.5001/omj.2010.24.
25. Barbari, G. R.; Dorkoosh, F. A.; Amini, M.; Sharifzadeh, M.; Atyabi, F.; Balalaie, S.; Tehrani, N. R.; Tehrani, M. R. A novel nanoemulsion-based method to produce ultrasmall, water-dispersible nanoparticles from chitosan, surface modified with cell-penetrating peptide for oral delivery of proteins and peptides. International Journal of Nanomedicine 2017, Volume 12, 3471–3483. https://doi.org/10.2147/ijn.s116063.
26. Koziolek, M.; Grimm, M.; Becker, D.; Iordanov, V.; Zou, H.; Shimizu, J.; Wanke, C.; Garbacz, G.; Weitschies, W. Investigation of pH and temperature profiles in the GI tract of fasted human subjects using the IntelliCap® system. Journal of Pharmaceutical Sciences 2015, 104 (9), 2855–2863. https://doi.org/10.1002/jps.24274.
27. Renukuntla, J.; Vadlapudi, A. D.; Patel, A.; Boddu, S. H. S.; Mitra, A. K. Approaches for enhancing oral bioavailability of peptides and proteins. International Journal of Pharmaceutics 2013, 447 (1–2), 75–93. https://doi.org/10.1016/j.ijpharm.2013.02.030.
28. Liu, L.; Yao, W.; Rao, Y.; Lu, X.; Gao, J. pH-Responsive carriers for oral drug delivery: challenges and opportunities of current platforms. Drug Delivery 2017, 24 (1), 569–581. https://doi.org/10.1080/10717544.2017.1279238.
29. Ward, P. D.; Tippin, T. K.; Thakker, D. R. Enhancing paracellular permeability by modulating epithelial tight junctions. Pharmaceutical Science & Technology Today 2000, 3 (10), 346–358. https://doi.org/10.1016/s1461-5347(00)00302-3.
30. Johansson, M. E. V.; Sjövall, H.; Hansson, G. C. The gastrointestinal mucus system in health and disease. Nature Reviews Gastroenterology & Hepatology 2013, 10 (6), 352–361. https://doi.org/10.1038/nrgastro.2013.35.
31. Cone, R. A. Barrier properties of mucus. Advanced Drug Delivery Reviews 2009, 61 (2), 75–85. https://doi.org/10.1016/j.addr.2008.09.008.
32. Lin, P.-Y.; Chuang, E.-Y.; Chiu, Y.-H.; Chen, H.-L.; Lin, K.-J.; Juang, J.-H.; Chiang, C.-H.; Mi, F.-L.; Sung, H.-W. Safety and efficacy of self-assembling bubble carriers stabilized with sodium dodecyl sulfate for oral delivery of therapeutic proteins. Journal of Controlled Release 2017, 259, 168–175. https://doi.org/10.1016/j.jconrel.2016.12.018.
33. Pearson, J. P.; Chater, P. I.; Wilcox, M. D. The properties of the mucus barrier, a unique gel – how can nanoparticles cross it? Therapeutic Delivery 2016, 7 (4), 229–244. https://doi.org/10.4155/tde-2015-0002.
34. Pawar, V. K.; Meher, J. G.; Singh, Y.; Chaurasia, M.; Reddy, B. S.; Chourasia, M. K. Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics: Strategies and industrial perspectives. Journal of Controlled Release 2014, 196, 168–183. https://doi.org/10.1016/j.jconrel.2014.09.031.
35. Shan, M.; Gentile, M.; Yeiser, J. R.; Walland, A. C.; Bornstein, V. U.; Chen, K.; He, B.; Cassis, L.; Bigas, A.; Cols, M.; Comerma, L.; Huang, B.; Blander, J. M.; Xiong, H.; Mayer, L.; Berin, C.; Augenlicht, L. H.; Velcich, A.; Cerutti, A. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 2013, 342 (6157), 447–453. https://doi.org/10.1126/science.1237910.
36. Boegh, M.; García-Díaz, M.; Müllertz, A.; Nielsen, H. M. Steric and interactive barrier properties of intestinal mucus elucidated by particle diffusion and peptide permeation. European Journal of Pharmaceutics and Biopharmaceutics 2015, 95, 136–143. https://doi.org/10.1016/j.ejpb.2015.01.014.
37. Ezike, T. C.; Okpala, U. S.; Onoja, U. L.; Nwike, C. P.; Ezeako, E. C.; Okpara, O. J.; Okoroafor, C. C.; Eze, S. C.; Kalu, O. L.; Odoh, E. C.; Nwadike, U. G.; Ogbodo, J. O.; Umeh, B. U.; Ossai, E. C.; Nwanguma, B. C. Advances in drug delivery systems, challenges and future directions. Heliyon 2023, 9 (6), e17488. https://doi.org/10.1016/j.heliyon.2023.e17488.
38. Ouyang, J.; Zhang, Z.; Deng, B.; Liu, J.; Wang, L.; Liu, H.; Koo, S.; Chen, S.; Li, Y.; Yaremenko, A. V.; Huang, X.; Chen, W.; Lee, Y.; Tao, W. Oral drug delivery platforms for biomedical applications. Materials Today 2023, 62, 296–326. https://doi.org/10.1016/j.mattod.2023.01.002.
39. Vargason, A. M.; Anselmo, A. C.; Mitragotri, S. The evolution of commercial drug delivery technologies. Nature Biomedical Engineering 2021, 5 (9), 951–967. https://doi.org/10.1038/s41551-021-00698-w.
40. Haddadzadegan, S.; Dorkoosh, F.; Bernkop-Schnürch, A. Oral delivery of therapeutic peptides and proteins: Technology landscape of lipid-based nanocarriers. Advanced Drug Delivery Reviews 2022, 182, 114097. https://doi.org/10.1016/j.addr.2021.114097.
41. Könczöl, Á.; Dargó, G. Brief overview of solubility methods: Recent trends in equilibrium solubility measurement and predictive models. Drug Discovery Today Technologies 2018, 27, 3–10. https://doi.org/10.1016/j.ddtec.2018.06.001.
42. Chintalapudi, R.; Murthy, T. E. G. K.; Lakshmi, Kr.; Manohar, Gg. Formulation, optimization, and evaluation of self-emulsifying drug delivery systems of nevirapine. International Journal of Pharmaceutical Investigation 2015, 5 (4), 205. https://doi.org/10.4103/2230-973x.167676.
43. Jacob, S.; Nair, A. B.; Shah, J.; Sreeharsha, N.; Gupta, S.; Shinu, P. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics 2021, 13 (3), 357. https://doi.org/10.3390/pharmaceutics13030357.
44. Assi, R. A.; Abdulbaqi, I. M.; Ming, T. S.; Yee, C. S.; Wahab, H. A.; Asif, S. M.; Darwis, Y. Liquid and Solid Self-Emulsifying Drug Delivery Systems (SEDDs) as carriers for the oral delivery of azithromycin: Optimization, in vitro characterization and stability assessment. Pharmaceutics 2020, 12 (11), 1052. https://doi.org/10.3390/pharmaceutics12111052.
45. Zaslavsky, J.; Allen, C. A dataset of formulation compositions for self-emulsifying drug delivery systems. Scientific Data 2023, 10 (1). https://doi.org/10.1038/s41597-023-02812-w.
46. Malkawi, A.; Alrabadi, N.; Kennedy, R. A. Dual-Acting Zeta-Potential-Changing Micelles for Optimal Mucus Diffusion and Enhanced Cellular Uptake after Oral Delivery. Pharmaceutics 2021, 13 (7), 974. https://doi.org/10.3390/pharmaceutics13070974.
47. Zhang, Q.; Murawsky, M.; LaCount, T.; Hao, J.; Kasting, G. B.; Newman, B.; Ghosh, P.; Raney, S. G.; Li, S. K. Characterization of temperature profiles in skin and transdermal delivery system when exposed to temperature gradients in vivo and in vitro. Pharmaceutical Research 2017, 34 (7), 1491–1504. https://doi.org/10.1007/s11095-017-2171-x.
48. Tekin-Cakmak, Z. H.; Atik, I.; Karasu, S. The potential use of Cold-Pressed pumpkin seed Oil By-Products in a Low-Fat salad dressing: the effect on rheological, microstructural, recoverable properties, and emulsion and oxidative stability. Foods 2021, 10 (11), 2759. https://doi.org/10.3390/foods10112759.
49. Tcholakova, S.; Valkova, Z.; Cholakova, D.; Vinarov, Z.; Lesov, I.; Denkov, N.; Smoukov, S. K. Efficient self-emulsification via cooling-heating cycles. Nature Communications 2017, 8 (1). https://doi.org/10.1038/ncomms15012.
50. Sharma, G. S.; Krishna, S.; Khan, S.; Dar, T. A.; Khan, K. A.; Singh, L. R. Protecting thermodynamic stability of protein: The basic paradigm against stress and unfolded protein response by osmolytes. International Journal of Biological Macromolecules 2021, 177, 229–240. https://doi.org/10.1016/j.ijbiomac.2021.02.102.
51. Nokhodchi, A.; Chavan, S.; Ghafourian, T. In vitro dissolution and permeability testing of inhalation products: challenges and advances. Pharmaceutics 2023, 15 (3), 983. https://doi.org/10.3390/pharmaceutics15030983.