Optimizing Animal Rehabilitation and Physical Therapy: AI-Driven Evidence-Based Strategies for Achieving Optimal Outcomes in Veterinary Practice

  • Tulsidas A. Patil, S. A. Jadhav, S. A. Surale-Patil
Keywords: Animal Rehabilitation, Physical Therapy, Artificial Intelligence, Evidence-Based Strategies, Veterinary Practice


Animal rehabilitation and physical therapy play crucial roles in restoring mobility, managing pain, and enhancing quality of life for injured or debilitated animals. However, optimizing these therapies to achieve the best outcomes requires a comprehensive understanding of individual patient needs, precise treatment planning, and ongoing assessment. Integrating artificial intelligence (AI) into veterinary practice offers promising opportunities to enhance rehabilitation and physical therapy protocols through evidence-based strategies tailored to each animal’s unique requirements. This abstract presents an overview of AI-driven approaches for optimizing animal rehabilitation and physical therapy, focusing on evidence-based strategies that facilitate optimal outcomes in veterinary practice. Leveraging AI algorithms, veterinary professionals can analyze vast amounts of data, including patient history, diagnostic imaging, and treatment responses, to develop personalized rehabilitation plans. By synthesizing this information, AI systems can identify patterns and correlations, enabling veterinarians to make data-driven decisions that maximize therapeutic effectiveness and minimize adverse effects. Furthermore, AI-powered predictive modeling enhances treatment planning by forecasting potential challenges and adjusting protocols accordingly. Through continuous monitoring of patient progress, AI algorithms can adapt rehabilitation regimens in real-time, ensuring that interventions remain aligned with evolving needs and capabilities. Additionally, AI-driven analytics enable veterinarians to assess treatment efficacy objectively, facilitating evidence-based adjustments and optimizing long-term outcomes.


[1] de Sire, A.; Marotta, N.; Marinaro, C.; Curci, C.; Invernizzi, M.; Ammendolia, A. Role of Physical Exercise and Nutraceuticals in Modulating Molecular Pathways of Osteoarthritis. Int. J. Mol. Sci. 2021, 22, 5722.
[2] Chen, H.-X.; Zhan, Y.-X.; Ou, H.-N.; You, Y.-Y.; Li, W.-Y.; Jiang, S.-S.; Zheng, M.-F.; Zhang, L.-Z.; Chen, K.; Chen, Q.-X. Effects of lower body positive pressure treadmill on functional improvement in knee osteoarthritis: A randomized clinical trial study. World J. Clin. Cases 2021, 9, 10604–10615.
[3] Long, Y.; Peng, Y. Development and Validation of a Robotic System Combining Mobile Wheelchair and Lower Extremity Exoskeleton. J. Intell. Robot. Syst. 2022, 104, 1–12.
[4] Shi, L.; Yu, Y.; Xiao, N.; Gan, D.; Wei, W. Biologically Inspired and Rehabilitation Robotics 2020. Appl. Bionics Biomech. 2022, 2022, 9852938.
[5] Li, X.; Liu, J.; Li, W.; Huang, Y.; Zhan, G. Force Transmission Analysis and Optimization of Bowden Cable on Body in a Flexible Exoskeleton. Appl. Bionics Biomech. 2022, 2022, 5552166.
[6] Cao, D.; Wang, J.; Liu, N. Research on human sports rehabilitation design based on object-oriented technology. J. Healthc. Eng. 2021, 2021, 6626957.
[7] Vélez-Guerrero, M.A.; Callejas-Cuervo, M.; Mazzoleni, S. Design, Development, and Testing of an Intelligent Wearable Robotic Exoskeleton Prototype for Upper Limb Rehabilitation. Sensors 2021, 21, 5411.
[8] Fazli, E.; Rakhtala, S.M.; Mirrashid, N.; Karimi, H.R. Real-time implementation of a super twisting control algorithm for an upper limb wearable robot. Mechatronics 2022, 84, 102808.
[9] Chen, Z.; Guo, Q.; Xiong, H.; Jiang, D.; Yan, Y. Control and Implementation of 2-DOF Lower Limb Exoskeleton Experiment Platform. Chin. J. Mech. Eng. Ji Xie Gong Cheng Xue Bao 2021, 34, 22.
[10] Secciani, N.; Brogi, C.; Pagliai, M.; Buonamici, F.; Gerli, F.; Vannetti, F.; Bianchini, M.; Volpe, Y.; Ridolfi, A. Wearable Robots: An Original Mechatronic Design of a Hand Exoskeleton for Assistive and Rehabilitative Purposes. Front. Neurorobot. 2021, 15, 750385.
[11] Moreno-SanJuan, V.; Cisnal, A.; Fraile, J.C.; Pérez-Turiel, J.; de-la-Fuente, E. Design and characterization of a lightweight underactuated RACA hand exoskeleton for neurorehabilitation. Robot. Auton. Syst. 2021, 143, 103828.
[12] Aragón-Martínez, A.; Arias-Montiel, M.; Lugo-González, E.; Tapia-Herrera, R. Two-finger exoskeleton with force feedback for a mobile robot teleoperation. Int. J. Adv. Robot. Syst. 2020, 17, 1729881419895648.
[13] Ceccarelli, M.; Morales-Cruz, C. A prototype characterization of ExoFinger, a finger exoskeleton. Int. J. Adv. Robot. Syst. 2021, 18, 17298814211024880.
[14] Hernández-Santos, C.; Davizón, Y.A.; Said, A.R.; Soto, R.; Felix-Herrán, L.C.; Vargas-Martínez, A. Development of a Wearable Finger Exoskeleton for Rehabilitation. Appl. Sci. 2021, 11, 4145.
[15] Vanteddu, T.; Ben-Tzvi, P. Stable Grasp Control with a Robotic Exoskeleton Glove. J. Mech. Robot. 2020, 12, 061015.
[16] Castiblanco, J.C.; Mondragon, I.F.; Alvarado-Rojas, C.; Colorado, J.D. Assist-As-Needed Exoskeleton for Hand Joint Rehabilitation Based on Muscle Effort Detection. Sensors 2021, 21, 4372.
How to Cite
Tulsidas A. Patil. (2024). Optimizing Animal Rehabilitation and Physical Therapy: AI-Driven Evidence-Based Strategies for Achieving Optimal Outcomes in Veterinary Practice. Revista Electronica De Veterinaria, 25(1), 392 - 404. Retrieved from https://www.veterinaria.org/index.php/REDVET/article/view/528