Genetic Characterization of Extended-Spectrum Beta- Lactamase (ESBL) and Metallo-Beta-Lactamase (MBL) Producing Klebsiellapneumoniae from Diabetic Foot Ulcer

  • Dipak S. Kale, Kailas D. Datkhile, Geeta S. Karande, Kalpana D. Kale, Satish R. Patil
Keywords: Antibiotic resistance, Beta-lactamase, Diabetic foot ulcer, Klebsiellapneumoniae


Background: Antibiotic resistance in common pathogenic bacteria is linked with the genetic makeup. The genetic basis of the antibiotic resistance may vary in different species or pathophysiological conditions.

Objectives:We studied the antibiotic resistance in Klebsiellapneumoniae isolates from diabetic foot ulcer (DFU) in western Indian population. We also studied the presence of extended-spectrum beta- lactamase (ESBL) and metallo-beta-lactamase (MBL) mechanism of antibiotic resistance along with the prevalence of the genes involved in ESBL (TEMESBL, SHVESBL, and CTX-MESBL) and MBL (NDM-1bla, KPCbla, OXA-48bla, and VIMbla) production.

Results:A total 161 K.pneumoniae isolates were analysed; among which 50.93% were positive for ESBL and 45.96% were positive for MBL production. Most of the isolates were resistant to antibiotics used in the present study and partially resistant to Imipenem and Amikacin. There was no relation between the antibiotic resistance of the isolates and the production of ESBL or MBL mechanism of antibiotic resistance. Further, TEMESBL was the most prevalent gene in K.pneumoniaeisolates followed by CTX-MESBL, NDM-1bla, SHVESBL, and KPCbla. VIMbla was the least prevalent gene found in K.pneumoniae isolates. There was no difference in the prevalence of the genes with respect to presence or absence of ESBL and MBL mechanism of resistance. Further, there was no relation between the prevalence of the genes and antibiotic resistance in K.pneumoniae isolates.

Conclusion:These results along with literature review suggest that the prevalence of the genes involved in antibiotic resistance mechanisms are widespread in India and their distribution vary in different studies.  


[1] Babypadmini, S., Appalaraju, B., 2004.Extended spectrum β-lactamases in urinary isolates of Escherichia coli and Klebsiells pneumonia – Prevalence and susceptibility pattern in a tertiary care hospital. Indian Journal of Medical Microbiology 22, 172–174.
[2] Bajpai, T., Pandey, M., Varma, M., Bhatambare, G.S., 2017.Prevalence of TEM, SHV, and CTX-M Beta-Lactamase genes in the urinary isolates of a tertiary care hospital. Avicenna J Med 07, 12–16.
[3] Blair, J.M.A., Webber, M.A., Baylay, A.J., Ogbolu, D.O., Piddock, L.J.V., 2015. Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13, 42–51.
[4] Chaudhry, W.N., Badar, R., Jamal, M., Jeong, J., Zafar, J., Andleeb, S., 2016.Clinico-microbiological study and antibiotic resistance profile of mecA and ESBL gene prevalence in patients with diabetic foot infections. Experimental and Therapeutic Medicine 11, 1031–1038.
[5] Datta, P., Chander, J., Gupta, V., Mohi, G.K., Attri, A.K., 2019. Evaluation of various risk factors associated with multidrug-resistant organisms isolated from diabetic foot ulcer patients. J Lab Physicians 11, 058–062.
[6] Doorduijn, D.J., Rooijakkers, S.H.M., Van Schaik, W., Bardoel, B.W., 2016. Complement resistance mechanisms of Klebsiellapneumoniae. Immunobiology 221, 1102–1109.
[7] Ferreira, R.L., Da Silva, B.C.M., Rezende, G.S., Nakamura-Silva, R., Pitondo-Silva, A., Campanini, E.B., Brito, M.C.A., Da Silva, E.M.L., Freire, C.C.D.M., Cunha, A.F.D., Pranchevicius, M.-C.D.S., 2019. High Prevalence of Multidrug-Resistant KlebsiellapneumoniaeHarboring Several Virulence and β-Lactamase Encoding Genes in a Brazilian Intensive Care Unit. Front. Microbiol.9, 3198.
[8] Gomez-Simmonds, A., Uhlemann, A.-C., 2017.Clinical Implications of Genomic Adaptation and Evolution of Carbapenem-Resistant Klebsiellapneumoniae.The Journal of Infectious Diseases 215, S18–S27.
[9] Govindaswamy, A., Bajpai, V., Khurana, S., Aravinda, A., Batra, P., Malhotra, R., Mathur, P., 2019. Prevalence and characterization of beta-lactamase-producing Escherichia coli isolates from a tertiary care hospital in India. J Lab Physicians 11, 123–127.
[10] Gupta, V., Garg, R., Kumaraswamy, K., Datta, P., Mohi, G.K., Chander, J., 2018. Phenotypic and genotypic characterization of carbapenem resistance mechanisms in Klebsiellapneumoniae from blood culture specimens: A study from North India. J Lab Physicians 10, 125–129.
[11] Gupta, V., Singh, M., Datta, P., Goel, A., Singh, S., Prasad, K., Chander, J., 2020. Detection of Various Beta-Lactamases in Escherichia coli and Klebsiella sp.: A Study from Tertiary Care Centre of North India. Indian Journal of Medical Microbiology 38, 390–396.
[12] Hu, Y., Anes, J., Devineau, S., Fanning, S., 2021. Klebsiellapneumoniae : Prevalence, Reservoirs, Antimicrobial Resistance, Pathogenicity, and Infection: A Hitherto Unrecognized Zoonotic Bacterium. Foodborne Pathogens and Disease 18, 63–84.
[13] Hussain, H.I., Aqib, A.I., Seleem, M.N., Shabbir, M.A., Hao, H., Iqbal, Z., Kulyar, M.F.-A., Zaheer, T., Li, K., 2021.Genetic basis of molecular mechanisms in β-lactam resistant gram-negative bacteria.Microbial Pathogenesis 158, 105040.
[14] Jaggi, N., Chatterjee, N., Singh, V., Giri, S.K., Dwivedi, P., Panwar, R., Sharma, A.P., 2019. Carbapenem resistance in Escherichia coli and Klebsiellapneumoniae among Indian and international patients in North India.AMicr 66, 367–376.
[15] Jneid, J., Lavigne, J.P., La Scola, B., Cassir, N., 2017. The diabetic foot microbiota: A review. Human Microbiome Journal 5–6, 1–6.
[16] Kale, D., Karande, G., Datkhile, K., 2023. Diabetic foot ulcer in India: Aetiological trends and bacterial diversity. Indian J EndocrMetab 27, 107.
[17] Lee, C.-R., Lee, J.H., Park, K.S., Jeon, J.H., Kim, Y.B., Cha, C.-J., Jeong, B.C., Lee, S.H., 2017. Antimicrobial Resistance of HypervirulentKlebsiellapneumoniae: Epidemiology, Hypervirulence-Associated Determinants, and Resistance Mechanisms. Front. Cell. Infect. Microbiol.7, 483.
[18] Li, B., Zhao, Y., Liu, C., Chen, Z., Zhou, D., 2014. Molecular pathogenesis of Klebsiellapneumoniae. Future Microbiology 9, 1071–1081.
[19] Nagaraj, S., Chandran, S., Shamanna, P., Macaden, R., 2012.Carbapenem resistance among Escherichia coli and Klebsiellapneumoniae in a tertiary care hospital in south India. Indian Journal of Medical Microbiology 30, 93–95.
[20] Noor, S., Zubair, M., Ahmad, J., 2015.Diabetic foot ulcer—A review on pathophysiology, classification and microbial etiology. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 9, 192–199.
[21] Patil, P., Shah, H., Singh, B., 2022. Phenotypic Detection of Carbapenem Resistance in Clinical Isolate of KlebsiellaPneumoniae in Tertiary Care Hospital.Journal of Pharmaceutical Negative Results 3559–3565.
[22] Poirel, L., Naas, T., Nordmann, P., 2008.Genetic support of extended-spectrum β-lactamases. Clinical Microbiology and Infection 14, 75–81.
[23] Pradeepa, R., Mohan, V., 2021. Epidemiology of type 2 diabetes in India.Indian J Ophthalmol 69, 2932.
[24] Rahman, M., Shukla, S.K., Prasad, K.N., Ovejero, C.M., Pati, B.K., Tripathi, A., Singh, A., Srivastava, A.K., Gonzalez-Zorn, B., 2014.Prevalence and molecular characterisation of New Delhi metallo-β-lactamases NDM-1, NDM-5, NDM-6 and NDM-7 in multidrug-resistant Enterobacteriaceae from India. International Journal of Antimicrobial Agents 44, 30–37.
[25] Sahoo, S., Otta, S., Swain, B., Kar, S.K., 2019.Detection and genetic characterization of extended-spectrum beta-lactamases producers in a tertiary care hospital. J Lab Physicians 11, 253–258.
[26] Saseedharan, S., Sahu, M., Chaddha, R., Pathrose, E., Bal, A., Bhalekar, P., Sekar, P., Krishnan, P., 2018. Epidemiology of diabetic foot infections in a reference tertiary hospital in India. Brazilian Journal of Microbiology 49, 401–406.
[27] Shahi, S.K., Kumar, A., 2016. Isolation and Genetic Analysis of Multidrug Resistant Bacteria from Diabetic Foot Ulcers. Front. Microbiol. 6.
[28] Shahi, S.K., Singh, V.K., Kumar, A., 2013. Detection of Escherichia coli and Associated β-Lactamases Genes from Diabetic Foot Ulcers by Multiplex PCR and Molecular Modeling and Docking of SHV-1, TEM-1, and OXA-1 β-Lactamases with Clindamycin and Piperacillin-Tazobactam. PLoS ONE 8, e68234.
[29] Shukla, S., Desai, S., Bagchi, A., Singh, P., Joshi, M., Joshi, C., Patankar, J., Maheshwari, G., Rajni, E., Shah, M., Gajjar, D., 2023.Diversity and Distribution of β-Lactamase Genes Circulating in Indian Isolates of Multidrug-Resistant Klebsiellapneumoniae.Antibiotics 12, 449.
[30] Singh, A., Jain, S., Kumar, D., Singh, R., Bhatt, H., 2015. Antimicrobial susceptibility pattern of extended-spectrum beta- lactamase producing Klebsiellapneumoniae clinical isolates in an Indian tertiary hospital. J Res Pharm Pract 4, 153.
[31] Sood, S., 2014. Identification and Differentiation of Carbapenemases in KlebsiellaPneumoniae: A Phenotypic Test Evaluation Study from Jaipur, India. JCDR.
[32] Sultana, R., Ahmed, I., Saima, S., Salam, M.T., Sultana, S., 2023. Diabetic foot ulcer-a systematic review on relevant microbial etiology and antibiotic resistance in Asian countries. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 17, 102783.
[33] Varaiya, A., Dogra, J., Kulkarni, M., Bhalekar, P., 2008.Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiellapneumoniae in diabetic foot infections.Indian J PatholMicrobiol 51, 370.
[34] Viswanathan, V., 2010.Epidemiology of Diabetic Foot and Management of Foot Problems in India. The International Journal of Lower Extremity Wounds 9, 122–126.
[35] Wall, I.B., Davies, C.E., Hill, K.E., Wilson, M.J., Stephens, P., Harding, K.G., Thomas, D.W., 2002. Potential role of anaerobic cocci in impaired human wound healing. Wound Repair Regen 10, 346–353.
[36] Walsh, T.R., Toleman, M.A., Poirel, L., Nordmann, P., 2005. Metallo-β-Lactamases: the Quiet before the Storm? ClinMicrobiol Rev 18, 306–325.
[37] Wang, G., Zhao, G., Chao, X., Xie, L., Wang, H., 2020. The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiellapneumoniae.IJERPH 17, 6278.
[38] Wright, G.D., 2007. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat Rev Microbiol 5, 175–186.
[39] Yadav, B., Mohanty, S., Behera, B., 2023.Occurrence and Genomic Characteristics of HypervirulentKlebsiellapneumoniae in a Tertiary Care Hospital, Eastern India.IDR Volume 16, 2191–2201.
[40] Zhang, J., Zhou, K., Zheng, B., Zhao, L., Shen, P., Ji, J., Wei, Z., Li, L., Zhou, J., Xiao, Y., 2016. High Prevalence of ESBL-Producing Klebsiellapneumoniae Causing Community-Onset Infections in China. Front. Microbiol. 7.
[41] Zubair, M., Malik, A., Ahmad, J., 2012.Study of Plasmid-Mediated Extended-Spectrum β-Lactamase-Producing Strains of Enterobacteriaceae, Isolated from Diabetic Foot Infections in a North Indian Tertiary-Care Hospital. Diabetes Technology & Therapeutics 14, 315–324.
[42] Zubair, M., Malik, A., Ahmad, J., 2011. Prevalence of metallo-beta-lactamase-producing Pseudomonas aeruginosa isolated from diabetic foot ulcer patients. Diabetes & Metabolic Syndrome: Clinical Research & Reviews 5, 90–92.
How to Cite
Dipak S. Kale. (2024). Genetic Characterization of Extended-Spectrum Beta- Lactamase (ESBL) and Metallo-Beta-Lactamase (MBL) Producing Klebsiellapneumoniae from Diabetic Foot Ulcer. Revista Electronica De Veterinaria, 25(1), 340 - 353. Retrieved from