A Comprehensive Examination of Thymic Acid's Advantageous Impacts on Fish Nutrient Absorption and Growth

  • Ravindra Kumar Singh, R Raghavendra, Devanshu J. Patel
Keywords: Fish, Thymic Acid, Production, Feed Efficiency

Abstract

Thymic acid (TA) is an important food additive that is used to boost feed efficiency, expansion, and production by increasing the structure and operations of the digestive tract and raising digestive secretion. Its primary use is in animal diets, mainly as a component of natural feed to lessen toxic chemicals in a variety of animal species. TA essential oil is crucial in improving nutritional absorption, defenses, overall health, and reproductive and productive capacity in cattle. The objective of this research is to summarize and assess the current body of knowledgeregarding the benefits of TA on fish development and reception of nutrients. The inclusion of TA into fish diets has shown significant gains in immune system performance, feed utilization, and general health. TA has demonstrated its capacity to improve fish reproductive and productive capabilities, as well as nutritional absorption and immunity, when combined with medicinal plants that are rich in powerful chemicals and naturally occurring antioxidants. The characteristics of TA, its antispasmodic, antibacterial, immunomodulatory, anticancer, and soothing qualities, are discussed in relation to fish nutrition. The review delves further into the physical properties, physiological functions, natural sources, and chemical makeup of TA in fish diet, providing light on its essential roles in nutrient absorption and development. The findings add to an improved comprehension of TA's beneficial effects on fish health and performance through its varied biological processes. This review is an excellent source for understanding the overall influence of TA on fish welfare and production.

References

Alagawany, M., Farag, M. R., Abdelnour, S. A., & Elnesr, S. S. (2021). A review of the beneficial effect of Thymol on the health and production of fish. Reviews in Aquaculture, 13(1), 632-641.D: https://doi.org/10.1111/raq.12490

Rudiansyah, M., Abdelbasset, W. K., Jasim, S. A., Mohammadi, G., Dharmarajlu, S. M., Nasirin, C., ...& Naserabad, S. S. (2022). Beneficial alterations in growth performance, blood biochemicals, immune responses, and antioxidant capacity of common carp (Cyprinus carpio) fed a blend of Thymus vulgaris, Origanum majorana, and Satureja hortensis extracts. Aquaculture, 555, 738254.Doi: https://doi.org/10.1016/j.aquaculture.2022.738254

Hoseini, S. M., &Yousefi, M. (2019). Beneficial effects of thyme (Thymus vulgaris) extract on oxytetracycline‐induced stress response, immunosuppression, oxidative stress, and enzymatic changes in rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 25(2), 298-309.Doi: https://doi.org/10.1111/anu.12853

Arpanahi, A. A., Feizian, M., Mehdipourian, G., &Khojasteh, D. N. (2020). Arbuscular mycorrhizal fungi inoculation improves essential oil and physiological parameters and nutritional values of Thymus diagenesis Celak and Thymus vulgaris L. under normal and drought stress conditions. European Journal of Soil Biology, 100, 103217.Doi:https://doi.org/10.1016/j.ejsobi.2020.103217

Abd El-Naby, A. S., Al-Sagheer, A. A., Negm, S. S., &Naiel, M. A. (2020). The dietary combination of chitosan nanoparticle and Thymol affects feed utilization, digestive enzymes, antioxidant status, and intestinal morphology of Oreochromisniloticus. Aquaculture, 515, 734577.Doi: https://doi.org/10.1016/j.aquaculture.2019.734577

Puvača, N., Tufarelli, V., &Giannenas, I. (2022). Essential oils in broiler chicken production, immunity, and meat quality: Review of Thymus vulgaris, Origanum vulgare, and Rosmarinus officinalis. Agriculture, 12(6), 874.Doi: https://doi.org/10.3390/agriculture12060874

Hamdhani, H., Eppehimer, D. E., & Bogan, M. T. (2020). Release of treated effluent into streams: A global review of ecological impacts with a consideration of its potential use for environmental flows. Freshwater Biology, 65(9), 1657-1670. Doi: https://doi.org/10.1111/fwb.13519

Khalil, S. R., AbdElhakim, Y., Abd El-fattah, A. H., Farag, M. R., Abd El-Hameed, N. E., &AbdElhakeem, E. M. (2020). Dual immunological and oxidative responses in Oreochromisniloticus fish exposed to lambda-cyhalothrin and concurrently fed with Thyme powder (Thymus vulgaris L.): Stress and immune encoding gene expression. Fish & shellfish immunology, 100, 208-218.Doi:https://doi.org/10.1016/j.fsi.2020.03.009

Ghafarifarsani, H., Hoseinifar, S. H., Sheikhlar, A., Raissy, M., Chaharmahali, F. H., Maneepitaksanti, W., ...& Van Doan, H. (2022). The effects of dietary thyme oil (Thymus vulgaris) essential oils for common carp (Cyprinus carpio): growth performance, digestive enzyme activity, antioxidant defense, tissue and mucus immune parameters, and resistance against Aeromonashydrophila. Aquaculture Nutrition, 2022.Doi: https://doi.org/10.1155/2022/7942506

Das, S., Pradhan, C., Singh, A. K., Vineetha, V. P., & Pillai, D. (2023). Dietary coriander (Coriandrumsativum L) oil improves growth, nutrient utilization, antioxidant status, tissue histomorphology, and reduces omega-3 fatty acid production in Nile tilapia (Oreochromisniloticus). Animal Feed Science and Technology, 305, 115774.Doi: https://doi.org/10.1016/j.anifeedsci.2023.115774

Shahrajabian, M. H., Cheng, Q., & Sun, W. (2022). The effects of amino acids, phenols and protein hydrolysates as biostimulants on sustainable crop production and alleviated stress. Recent Patents on Biotechnology, 16(4), 319-328.Doi: https://doi.org/10.2174/1872208316666220412133749

Ali, M., Chand, N., Khan, S., Ahmad, S., & Tahir, M. (2023). Effect of Different Combinations of Methanolic Extract of Moringaoleifera and Thymus vulgaris on Production Performance, Gut Morphology, Hematology and Nutrient Digestibility in Broilers.Doi: https://dx.doi.org/10.17582/journal.pjz/20221218121209

Pliego, A. B., Tavakoli, M., Khusro, A., Seidavi, A., Elghandour, M. M., Salem, A. Z., ...& Rene Rivas-Caceres, R. (2022). Beneficial and adverse effects of medicinal plants as feed supplements in poultry nutrition: A review. Animal Biotechnology, 33(2), 369-391.Doi: https://doi.org/10.1080/10495398.2020.1798973

Lockyer, S. (2020). Effects of diets, foods and nutrients on immunity: Implications for COVID‐19?. Nutrition Bulletin, 45(4), 456-473.Doi: https://doi.org/10.1111/nbu.12470

Grajek, M., Krupa-Kotara, K., Białek-Dratwa, A., Sobczyk, K., Grot, M., Kowalski, O., &Staśkiewicz, W. (2022). Nutrition and mental health: A review of current knowledge about the impact of diet on mental health. Frontiers in Nutrition, 9, 943998.Doi: https://doi.org/10.3389/fnut.2022.943998

Pelusio, N. F., Rossi, B., Parma, L., Volpe, E., Ciulli, S., Piva, A., ...&Grilli, E. (2020). Effects of increasing dietary level of organic acids and nature-identical compounds on growth, intestinal cytokine gene expression and gut microbiota of rainbow trout (Oncorhynchus mykiss) reared at normal and high temperature. Fish & Shellfish Immunology, 107, 324-335.Doi: https://doi.org/10.1016/j.fsi.2020.10.021

Kwasek, K., Thorne-Lyman, A. L., & Phillips, M. (2020). Can human nutrition be improved through better fish feeding practices? a review paper. Critical reviews in food science and nutrition, 60(22), 3822-3835.Doi:https://doi.org/10.1080/10408398.2019.1708698

Adams, J. B., Taljaard, S., Van Niekerk, L., &Lemley, D. A. (2020). Nutrient enrichment as a threat to the ecological resilience and health of South African microtidal estuaries. African Journal of Aquatic Science, 45(1-2), 23-40.Doi:https://doi.org/10.2989/16085914.2019.1677212

Burkepile, D. E., Shantz, A. A., Adam, T. C., Munsterman, K. S., Speare, K. E., Ladd, M. C., ... & Holbrook, S. J. (2020). Nitrogen identity drives differential impacts of nutrients on coral bleaching and mortality. Ecosystems, 23, 798-811.Doi:https://doi.org/10.1007/s10021-019-00433-2

Fawole, F. J., Adeoye, A. A., Tiamiyu, L. O., Ajala, K. I., Obadara, S. O., &Ganiyu, I. O. (2020). Substituting fishmeal with Hermetiaillucens in the diets of African catfish (Clariasgariepinus): Effects on growth, nutrient utilization, haemato-physiological response, and oxidative stress biomarker. Aquaculture, 518, 734849.Doi:https://doi.org/10.1016/j.aquaculture.2019.734849

Pouil, S., Samsudin, R., Slembrouck, J., Sihabuddin, A., Sundari, G., Khazaidan, K., ...& Caruso, D. (2019). Nutrient budgets in a small-scale freshwater fish pond system in Indonesia. Aquaculture, 504, 267-274.Doi:https://doi.org/10.1016/j.aquaculture.2019.01.067

Khangaonkar, T., Nugraha, A., Xu, W., &Balaguru, K. (2019). Salish Sea response to global climate change, sea level rise, and future nutrient loads. Journal of Geophysical Research: Oceans, 124(6), 3876-3904.Doi:https://doi.org/10.1029/2018JC014670

Britton, J. R. (2023). Contemporary perspectives on the ecological impacts of invasive freshwater fishes. Journal of Fish Biology, 103(4), 752-764.Doi:https://doi.org/10.1111/jfb.15240

Osmond, A. T., & Colombo, S. M. (2019). The future of genetic engineering to provide essential dietary nutrients and improve growth performance in aquaculture: advantages and challenges. Journal of the World Aquaculture Society, 50(3), 490-509.Doi:https://doi.org/10.1111/jwas.12595

Fiorella, K. J., Okronipa, H., Baker, K., &Heilpern, S. (2021). Contemporary aquaculture: implications for human nutrition. Current Opinion in Biotechnology, 70, 83-90.Doi: https://doi.org/10.1016/j.copbio.2020.11.014

Birk, S., Chapman, D., Carvalho, L., Spears, B. M., Andersen, H. E., Argillier, C., ...&Hering, D. (2020). Impacts of multiple stressors on freshwater biota across spatial scales and ecosystems. Nature Ecology & Evolution, 4(8), 1060-1068.Doi: https://doi.org/10.1038/s41559-020-1216-4

Kong, W., Huang, S., Yang, Z., Shi, F., Feng, Y., &Khatoon, Z. (2020). Fish feed quality is a key factor in impacting aquaculture water environment: evidence from incubator experiments. Scientific reports, 10(1), 187.Doi: https://doi.org/10.1007/978-3-030-41629-4_19

Atique, U., &An, K. G. (2020). Landscape heterogeneity impacts water chemistry, nutrient regime, organic matter and chlorophyll dynamics in agricultural reservoirs. Ecological Indicators, 110, 105813.Doi: https://doi.org/10.1016/j.ecolind.2019.105813

Epstein, G., Middelburg, J. J., Hawkins, J. P., Norris, C. R., & Roberts, C. M. (2022). The impact of mobile demersal fishing on carbon storage in seabed sediments. Global Change Biology, 28(9), 2875-2894.Doi: https://doi.org/10.1111/gcb.16105

El Semary, N. A. H. (2020). Algae and Fishes: benefits and Hazards. Climate Change Impacts on Agriculture and Food Security in Egypt: Land and Water Resources—Smart Farming—Livestock, Fishery, and Aquaculture, 465-479.Doi: https://doi.org/10.1007/978-3-030-41629-4_19

Okeke, E. S., Okoye, C. O., Atakpa, E. O., Ita, R. E., Nyaruaba, R., Mgbechidinma, C. L., & Akan, O. D. (2022). Microplastics in agroecosystems-impacts on ecosystem functions and food chain. Resources, Conservation and Recycling, 177, 105961. Doi: https://doi.org/10.1016/j.resconrec.2021.105961

Flood, P. J., Duran, A., Barton, M., Mercado-Molina, A. E., &Trexler, J. C. (2020). Invasion impacts on functions and services of aquatic ecosystems. Hydrobiologia, 847, 1571-1586. Doi: https://doi.org/10.1007/s10750-020-04211-3

Talukdar, A., Deo, A. D., Sahu, N. P., Sardar, P., Aklakur, M., Prakash, S., ...& Kumar, S. (2020). Effects of dietary protein on growth performance, nutrient utilization, digestive enzymes and physiological status of grey mullet, Mugilcephalus L. fingerlings reared in inland saline water. Aquaculture Nutrition, 26(3), 921-935. Doi: https://doi.org/10.1111/anu.13050

Sarker, P. K., Kapuscinski, A. R., Vandenberg, G. W., Proulx, E., &Sitek, A. J. (2020). Towards sustainable and ocean-friendly aquafeeds: Evaluating a fish-free feed for rainbow trout (Oncorhynchus mykiss) using three marine microalgae species. Elem SciAnth, 8, 5. Doi: https://doi.org/10.1525/elementa.404

Maucieri, C., Nicoletto, C., Zanin, G., Birolo, M., Trocino, A., Sambo, P., ...&Xiccato, G. (2019). Effect of stocking density of fish on water quality and growth performance of European Carp and leafy vegetables in a low-tech aquaponic system. PloS one, 14(5), e0217561. Doi: https://doi.org/10.1371/journal.pone.0217561

MontazeriParchikolaei, H., AbedianKenari, A., &Esmaeili, N. (2021). Soya bean‐based diets plus probiotics improve the profile of fatty acids, digestibility, intestinal microflora, growth performance and the innate immunity of beluga (Husohuso). Aquaculture Research, 52(1), 152-166. Doi: https://doi.org/10.1111/are.14877

Piskin, E., Cianciosi, D., Gulec, S., Tomas, M., &Capanoglu, E. (2022). Iron absorption: factors, limitations, and improvement methods. ACS omega, 7(24), 20441-20456. Doi: https://doi.org/10.1021/acsomega.2c01833

Mirzakhani, N., Ebrahimi, E., Jalali, S. A. H., &Ekasari, J. (2019). Growth performance, intestinal morphology and nonspecific immunity response of Nile tilapia (Oreochromisniloticus) fry cultured in biofloc systems with different carbon sources and input C: N ratios. Aquaculture, 512, 734235. Doi: https://doi.org/10.1016/j.aquaculture.2019.734235

Emenike, E. C., Iwuozor, K. O., &Anidiobi, S. U. (2021). Heavy metal pollution in aquaculture: sources, impacts and mitigation techniques. Biological Trace Element Research, 1-17. Doi: https://doi.org/10.1007/s12011-021-03037-x

Herawati, V. E., Windarto, S., Prasetyo, D. Y. B., Prayitno, S. B., & Karna Radjasa, O. (2023). The effect of mass cultured Phronimapacifica feed using Caulerpalentillifera substrate on growth performance and nutritional quality of pacific white shrimp (Litopenaeusvannamei). Journal of Applied Aquaculture, 35(3), 703-721. Doi: https://doi.org/10.1080/10454438.2021.2018378

Published
2024-01-01
How to Cite
Ravindra Kumar Singh, R Raghavendra, Devanshu J. Patel. (2024). A Comprehensive Examination of Thymic Acid’s Advantageous Impacts on Fish Nutrient Absorption and Growth. Revista Electronica De Veterinaria, 25(1), 51-59. Retrieved from https://www.veterinaria.org/index.php/REDVET/article/view/488
Section
Articles