Meta-Analysis of Motor Protein KIF14 with Reference to Cancer

  • Vimalraj Thangaraja
  • Vijay Krishnan
  • Sivakumar Murugesan
  • Shahid S. Siddiqui
  • Sivakumar Loganathan
Keywords: Receptor threonine kinase, KIF14, Protein regulating cytokinesis 1, Citron kinase, Motor protein, Lung cancer

Abstract

Comprehensive genetic profiling is anticipated to change the way cancer is treatment. KIF14 signaling is responsible for carcinogenesis in a number of malignancies. From this angle, we talk about how often KIF14 mutations and copy number alterations are in different solid tumors. In order to gather information on KIF14 transformation and augmentation from various cancers, we used important data sets such as cBioportal, PubMed, and COSMIC. Our studies describe the clinical data for many malignancies induced by the KIF14 (kinesin family member 14) mutations alter specific regions of the human, Alterations in the KIF14 protein may serve as potential biomarkers for confirming malignant progression. Amino acid and nucleotide variations have been documented across several cancer types. In this review, we provide a comprehensive analysis of these alterations in various malignancies. Our findings indicate that missense mutations are the most prevalent across all cancer types, underscoring the distribution and frequency of KIF14 mutations in different tumor tissues.

Author Biographies

Vimalraj Thangaraja

Department of Environmental Science, Periyar University, Salem, Tamilnadu, India - 636011.

Vijay Krishnan

Department of Environmental Science, Periyar University, Salem, Tamilnadu, India - 636011.

Sivakumar Murugesan

Department of Environmental Science, Periyar University, Salem, Tamilnadu, India - 636011.

Shahid S. Siddiqui

Department of Environmental Science, Periyar University, Salem, Tamilnadu, India - 636011.

Sivakumar Loganathan

Department of Environmental Science, Periyar University, Salem, Tamilnadu, India - 636011.

References

[1] Pandey, H., Popov, M., Goldstein-Levitin, A., & Gheber, L. (2021). Mechanisms by which kinesin-5 motors perform their multiple intracellular functions. International Journal of Molecular Sciences, 22(12), 6420. https://doi.org/10.3390/ijms22126420
[2] Kalantari, S., & Filges, I. (2020). ‘Kinesinopathies’: emerging role of the kinesin family member genes in birth defects. Journal of Medical Genetics, 57(12), 797-807. https://doi.org/10.1136/jmedgenet-2019-106769
[3] Zhang, H., Meng, S., Chu, K., Chu, S., Fan, Y. C., Bai, J., & Yu, Z. Q. (2022). KIF4A drives gliomas growth by transcriptional repression of Rac1/Cdc42 to induce cytoskeletal remodeling in glioma cells. Journal of Cancer, 13(15), 3640. https://doi.org/10.7150%2Fjca.77238
[4] Xiao, L., Zhang, S., Zheng, Q., & Zhang, S. (2021). Dysregulation of KIF14 regulates the cell cycle and predicts poor prognosis in cervical cancer: a study based on integrated approaches. Brazilian Journal of Medical and Biological Research, 54(11), e11363. https://doi.org/10.1590/1414-431X2021e11363
[5] Guedes-Dias, P., & Holzbaur, E. L. (2019). Axonal transport: Driving synaptic function. Science, 366(6462), eaaw9997. https://doi.org/10.1126/science.aaw9997
[6] Cason, S. E., & Holzbaur, E. L. (2022). Selective motor activation in organelle transport along axons. Nature Reviews Molecular Cell Biology, 23(11), 699-714. https://doi.org/10.1038/s41580-022-00491-w
[7] Siddiqui, S. S., Loganathan, S., Elangovan, V. R., & Ali, M. Y. (2023). Artificial intelligence in precision medicine. In A Handbook of Artificial Intelligence in Drug Delivery (pp. 531-569). Academic Press. https://doi.org/10.1016/B978-0-323-89925-3.00020-4
[8] Zhernov, I., Diez, S., Braun, M., & Lansky, Z. (2020). Intrinsically disordered domain of kinesin-3 Kif14 enables unique functional diversity. Current Biology, 30(17), 3342-3351. https://doi.org/10.1016/j.cub.2020.06.039
[9] Miki, H., Setou, M., Kaneshiro, K., & Hirokawa, N. (2001). All kinesin superfamily protein, KIF, genes in mouse and human. Proceedings of the National Academy of Sciences, 98(13), 7004-7011. https://doi.org/10.1073/pnas.111145398
[10] Liu, B., & Lee, Y. R. J. (2022). Spindle assembly and mitosis in plants. Annual Review of Plant Biology, 73, 227-254. https://doi.org/10.1146/annurev-arplant-070721-084258
[11] Carlton, J. G., Jones, H., & Eggert, U. S. (2020). Membrane and organelle dynamics during cell division. Nature Reviews Molecular Cell Biology, 21(3), 151-166. https://doi.org/10.1038/s41580-019-0208-1
[12] Neska-Długosz, I., Buchholz, K., Durślewicz, J., Gagat, M., Grzanka, D., Tojek, K., & Klimaszewska-Wiśniewska, A. (2021). Prognostic impact and functional annotations of KIF11 and KIF14 expression in patients with colorectal cancer. International Journal of Molecular Sciences, 22(18), 9732. https://doi.org/10.3390/ijms22189732
[13] Wang, W., Zhang, R., Wang, X., Wang, N., Zhao, J., Wei, Z., ... & Wang, C. (2020). Suppression of KIF3A inhibits triple negative breast cancer growth and metastasis by repressing Rb‐E2F signaling and epithelial‐mesenchymal transition. Cancer science, 111(4), 1422-1434. https://doi.org/10.1111/cas.14324
[14] Ayala, F. R. R., Martin, J. W., & Bertuzzo, C. S. (2023). Replication Timing Aberration of KIF14 and MDM4/PI3KC 2 β Alleles and Aneuploidy as Markers of Chromosomal Instability and Poor Treatment Response in Ewing Family Tumor Patients. Global Medical Genetics, 10(02), 054-062. https://doi.org/10.1055/s-0043-1768238
[15] Pallavicini, G., Gai, M., Iegiani, G., Berto, G. E., Adrait, A., Couté, Y., & Di Cunto, F. (2021). Goldberg–Shprintzen syndrome protein KIF1BP is a CITK interactor implicated in cytokinesis. Journal of cell science, 134(11), jcs250902. https://doi.org/10.1242/jcs.250902
[16] Sivakumar, M., Jayakumar, M., Seedevi, P., Sivasankar, P., Ravikumar, M., Surendar, S., ... & Loganathan, S. (2020). Meta-analysis of functional expression and mutational analysis of c-Met in various cancers. Current Problems in Cancer, 44(4), 100515. https://doi.org/10.1016/j.currproblcancer.2019.100515
[17] Crosas-Molist, E., Samain, R., Kohlhammer, L., Orgaz, J. L., George, S. L., Maiques, O., ... & Sanz-Moreno, V. (2022). Rho GTPase signaling in cancer progression and dissemination. Physiological Reviews, 102(1), 455-510. https://doi.org/10.1152/physrev.00045.2020
[18] Ibrahim, I. H., Balah, A., Hassan, A. G. A. E., & Abd El-Aziz, H. G. (2022). Role of motor proteins in human cancers. Saudi Journal of Biological Sciences, 29(12), 103436. https://doi.org/10.1016/j.sjbs.2022.103436
[19] Li, X., Huang, W., Huang, W., Wei, T., Zhu, W., Chen, G., & Zhang, J. (2020). Kinesin family members KIF2C/4A/10/11/14/18B/20A/23 predict poor prognosis and promote cell proliferation in hepatocellular carcinoma. American Journal of Translational Research, 12(5), 1614. PMID: 32509165
[20] Liu, J., Li, D., Zhang, X., Li, Y., & Ou, J. (2020). Histone demethylase KDM3A promotes cervical cancer malignancy through the ETS1/KIF14/hedgehog Axis. OncoTargets and therapy, 13, 11957. https://doi.org/10.2147%2FOTT.S276559
[21] Hanicinec, V., Brynychova, V., Rosendorf, J., Palek, R., Liska, V., Oliverius, M., ... & Soucek, P. (2021). Gene expression of cytokinesis regulators PRC1, KIF14 and CIT has no prognostic role in colorectal and pancreatic cancer. Oncology Letters, 22(2), 1-12. https://doi.org/10.3892/ol.2021.12859
[22] Klimaszewska-Wiśniewska, A., Neska-Długosz, I., Buchholz, K., Durślewicz, J., Grzanka, D., Kasperska, A., ... & Gagat, M. (2021). Prognostic significance of KIF11 and KIF14 expression in pancreatic adenocarcinoma. Cancers, 13(12), 3017. https://doi.org/10.3390/cancers13123017
[23] Zhang, X., Li, L., Huang, S., Liao, W., Li, J., Huang, Z., ... & Lian, Y. (2022). Comprehensive analysis of ANLN in human tumors: A prognostic biomarker associated with cancer immunity. Oxidative Medicine and Cellular Longevity, 2022(1), 5322929. https://doi.org/10.3390/ijms22189732
[24] Mandal, K., Pogoda, K., Nandi, S., Mathieu, S., Kasri, A., Klein, E., ... & Manneville, J. B. (2019). Role of a kinesin motor in cancer cell mechanics. Nano letters, 19(11), 7691-7702. https://doi.org/10.1021/acs.nanolett.9b02592
[25] Halcrow, E. F., Mazza, R., Diversi, A., Enright, A., & D’Avino, P. P. (2022). Midbody proteins display distinct dynamics during cytokinesis. Cells, 11(21), 3337. https://doi.org/10.3390/cells11213337
[26] Ling, B., Liao, X., Huang, Y., Liang, L., Jiang, Y., Pang, Y., & Qi, G. (2020). Identification of prognostic markers of lung cancer through bioinformatics analysis and in vitro experiments. International journal of oncology, 56(1), 193-205. https://doi.org/10.3892/ijo.2019.4926
[27] Gobbi, G., Donati, B., Do Valle, I. F., Reggiani, F., Torricelli, F., Remondini, D., ... & Sancisi, V. (2019). The Hippo pathway modulates resistance to BET proteins inhibitors in lung cancer cells. Oncogene, 38(42), 6801-6817. https://doi.org/10.1038/s41388-019-0924-1
[28] Zaravinos, A., Lambrou, G. I., Boulalas, I., Delakas, D., & Spandidos, D. A. (2011). Identification of common differentially expressed genes in urinary bladder cancer. PloS one, 6(4), e18135. https://doi.org/10.1371/journal.pone.0018135
[29] Thole, T. M., Lodrini, M., Fabian, J., Wuenschel, J., Pfeil, S., Hielscher, T., ... & Deubzer, H. E. (2017). Neuroblastoma cells depend on HDAC11 for mitotic cell cycle progression and survival. Cell death & disease, 8(3), e2635-e2635. https://doi.org/10.1038/cddis.2017.49
[30] Chen, Q., Zhao, H., & Hu, J. (2023). A robust six-gene prognostic signature based on two prognostic subtypes constructed by chromatin regulators is correlated with immunological features and therapeutic response in lung adenocarcinoma. Aging (Albany NY), 15(21), 12330. https://doi.org/10.18632%2Faging.205183
[31] Li, L., & Ran, J. (2024). Regulation of ciliary homeostasis by intraflagellar transport-independent kinesins. Cell Death & Disease, 15(1), 47. https://doi.org/10.1038/s41419-024-06428-9
[32] Yang, Y., Gao, L., Weng, N. N., Li, J. J., Liu, J. L., Zhou, Y., ... & Zhu, Q. (2021). Identification of novel molecular therapeutic targets and their potential prognostic biomarkers among kinesin superfamily of proteins in pancreatic ductal adenocarcinoma. Frontiers in Oncology, 11, 708900. https://doi.org/10.3389/fonc.2021.708900
[33] Basavarajappa, H. D., & Corson, T. W. (2012). KIF14 as an oncogene in retinoblastoma: a target for novel therapeutics?. Future medicinal chemistry, 4(17), 2149-2152. https://doi.org/10.4155/fmc.12.158
[34] Lopez-Cade, I., García-Barberán, V., Cabanas Morafraile, E., Díaz-Tejeiro, C., Saiz-Ladera, C., Sanvicente, A., ... & Ocaña, A. (2022). Genomic mapping of copy number variations influencing immune response in breast cancer. Frontiers in Oncology, 12, 975437. https://doi.org/10.3389/fonc.2022.975437
[35] Vives-Usano, M., García Pelaez, B., Román Lladó, R., Garzón Ibañez, M., Aldeguer, E., Rodriguez, S., ... & Mayo de las Casas, C. (2021). Analysis of copy number variations in solid tumors using a next generation sequencing custom panel. Journal of Molecular Pathology, 2(2), 123-134. https://doi.org/10.3390/jmp2020013
[36] Pfarr, N., Penzel, R., Klauschen, F., Heim, D., Brandt, R., Kazdal, D., ... & Stenzinger, A. (2016). Copy number changes of clinically actionable genes in melanoma, non‐small cell lung cancer and colorectal cancer—A survey across 822 routine diagnostic cases. Genes, Chromosomes and Cancer, 55(11), 821-833. https://doi.org/10.1002/gcc.22378
[37] Kim, Y. H., Hong, E. K., Kong, S. Y., Han, S. S., Kim, S. H., Rhee, J. K., ... & Kim, T. M. (2016). Two classes of intrahepatic cholangiocarcinoma defined by relative abundance of mutations and copy number alterations. Oncotarget, 7(17), 23825. https://doi.org/10.18632%2Foncotarget.8183
[38] Robles, A. I., Traverso, G., Zhang, M., Roberts, N. J., Khan, M. A., Joseph, C., ... & Papadopoulos, N. (2016). Whole-exome sequencing analyses of inflammatory bowel Disease− Associated colorectal cancers. Gastroenterology, 150(4), 931-943. https://doi.org/10.1053/j.gastro.2015.12.036
[39] Jiang, W., Wang, J., Yang, X., Shan, J., Zhang, Y., Shi, X., ... & Li, X. (2023). KIF14 promotes proliferation, lymphatic metastasis and chemoresistance through G3BP1/YBX1 mediated NF-κB pathway in cholangiocarcinoma. Oncogene, 42(17), 1392-1404. https://doi.org/10.1038/s41388-023-02661-2
[40] Yang, Z., Li, C., Yan, C., Li, J., Yan, M., Liu, B., ... & Gu, Q. (2019). KIF14 promotes tumor progression and metastasis and is an independent predictor of poor prognosis in human gastric cancer. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1865(1), 181-192. https://doi.org/10.1016/j.bbadis.2018.10.039
[41] Klimaszewska-Wiśniewska, A., Neska-Długosz, I., Buchholz, K., Durślewicz, J., Grzanka, D., Kasperska, A., ... & Gagat, M. (2021). Prognostic significance of KIF11 and KIF14 expression in pancreatic adenocarcinoma. Cancers, 13(12), 3017. https://doi.org/10.3390/cancers13123017
[42] Li, Y., Hong, X., Zhai, J., Liu, Y., Li, R., Wang, X., ... & Lv, Q. (2023). Novel circular RNA circ-0002727 regulates miR-144-3p/KIF14 pathway to promote lung adenocarcinoma progression. Frontiers in Cell and Developmental Biology, 11, 1249174. https://doi.org/10.3389/fcell.2023.1249174
[43] Singel, S. M., Cornelius, C., Zaganjor, E., Batten, K., Sarode, V. R., Buckley, D. L., ... & Shay, J. W. (2014). KIF14 promotes AKT phosphorylation and contributes to chemoresistance in triple-negative breast cancer. Neoplasia, 16(3), 247-256. http://dx.doi.org/10.1016/j.neo.2014.03.008
[44] Thériault, B. L., Basavarajappa, H. D., Lim, H., Pajovic, S., Gallie, B. L., & Corson, T. W. (2014). Transcriptional and epigenetic regulation of KIF14 overexpression in ovarian cancer. PLoS One, 9(3), e91540. https://doi.org/10.1371/journal.pone.0091540
[45] Thériault, B. L., & Corson, T. W. (2015). KIF14: a clinically relevant kinesin and potential target for cancer therapy. In Kinesins and Cancer (pp. 149-170). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-017-9732-0_10
[46] Wang, J. M., Zhang, F. H., Liu, Z. X., Tang, Y. J., Li, J. F., & Xie, L. P. (2024). Cancer on motors: How kinesins drive prostate cancer progression?. Biochemical Pharmacology, 116229. https://doi.org/10.1016/j.bcp.2024.116229
[47] Benoit, M. P., Asenjo, A. B., Paydar, M., Dhakal, S., Kwok, B. H., & Sosa, H. (2021). Structural basis of mechano-chemical coupling by the mitotic kinesin KIF14. Nature communications, 12(1), 3637. https://doi.org/10.1038/s41467-021-23581-3
[48] Miyamoto, I., Kasamatsu, A., Yamatoji, M., Nakashima, D., Saito, K., Higo, M., ... & Uzawa, K. (2015). Kinesin family member 14 in human oral cancer: A potential biomarker for tumoral growth. Biochemistry and Biophysics Reports, 3, 26-31. https://doi.org/10.1016/j.bbrep.2015.07.008
Published
2024-03-30
How to Cite
Vimalraj Thangaraja, Vijay Krishnan, Sivakumar Murugesan, Shahid S. Siddiqui, & Sivakumar Loganathan. (2024). Meta-Analysis of Motor Protein KIF14 with Reference to Cancer. Revista Electronica De Veterinaria, 25(1), 4286-4305. https://doi.org/10.69980/redvet.v25i1.2213
Section
Articles