Thermal decomposition of 3-butyl-2,6-bis(4-fluorophenyl)piperidin-4-one in nitrogen atmosphere-Non-isothermal condition

  • G.Vallal Perumal
  • V.J.Ramya Devi
  • G.Rajarajan
  • V.Thanikachalam
Keywords: TG, DTA, DTG,, Friedmann, KAS, FWO, model fitting analysis and F3 model.

Abstract

 The compound 3-butyl-2,6-bis(4-fluorophenyl)piperidin-4-one was synthesized by refluxed with ammonium acetate, 2-heptanone and 4-flurobenzaldehyde using distilled ethanol. The synthesized product was characterized using FT-IR and NMR spectroscopy. Its thermal behavior was examined through decomposition studies carried out with a system integrating thermogravimetric analysis (TG), differential thermal analysis (DTA) and differential thermogravimetric analysis (DTG) under a dynamic nitrogen atmosphere over a range of temperatures. Kinetic and thermodynamic parameters were determined using iso-conversional model-free approaches, including the Friedman, Flynn-Wall-Ozawa (FWO) and Kissinger-Akahira-Sunose (KAS) methods. For model-fitting analysis, the Coats-Redfern method was employed. The TG curves revealed a single-step decomposition process. Activation energy (Ea) values and correlation coefficients (r) were obtained and graphically represented based on the isoconversional methods. Comparison of the theoretical reaction models with experimental results indicated that the compound decomposes according to a two-dimensional diffusion mechanism (F3 model). The derived kinetic and thermodynamic parameters were systematically summarized in tabulated form and illustrated through graphical plots.

Author Biographies

G.Vallal Perumal

Department of Chemistry, Annamalai University, Annamalainagar-608002, India

V.J.Ramya Devi

Department of Chemistry, Annamalai University, Annamalainagar-608002, India;

G.Rajarajan

Department of Chemistry, Annamalai University, Annamalainagar-608002, India;

V.Thanikachalam

Department of Chemistry, Annamalai University, Annamalainagar-608002, India;

References

[1] Kumar KA, Jayaroopa P (2013) Isoxazoles: molecules with potential medicinal properties. Int J Pharm Chem Biol Sci 3: 294-304.
[2] Perumal V, Adiraj M, Pandiyan P (2001) Synthesis, analgesic and anti inflammatory evaluation of substituted 4-piperidones. Indian drugs-bombay 38: 156-159.
[3] Hagenbach RE, Gysin H (1952) Über einige heterozyklische Thiosemicarbazone. Experientia 8: 184-185. https://doi.org/10.1007/BF02173735
[4] Katritzky AR, Fan W (1990) The chemistry of benzotriazole: A novel and versatile synthesis of 1-alkyl-,1-aryl-, 1-(alkylamino)-, or 1-amido-substituted and of 1,2,6-trisubstituted piperidines from glutaraldehyde and primary amines or monosubstituted hydrazines. The Journal of Organic Chemistry 55(10): 3205-3209. https://doi.org/10.1021/jo00297a041
[5] Ganellin CR, Spickett RGW (1965) Compounds affecting the central nervous system. I. 4-Piperidones and related compounds. Journal of Medicinal Chemistry 8(5): 619-625. https://doi.org/10.1021/jm00329a015
[6] Agarwal OP (2002) Chemistry of organic natural products. Goel Publishing House (Vol. 2): Meerut, India.
[7] Finar IL (1975) Organic chemistry London. England ELBS Vol. 2: pp. 651-660.
[8] Wagstaff AJ, Cheer SM, Matheson AJ, Ormrod D, Goa KL (2002) Paroxetine: an update of its use in psychiatric disorders in adults. Drugs 62(4): 655-703. https://doi.org/10.2165/00003495-200262040-00010
[9] Abdel-Fatah SM, Díaz-Sánchez M, Díaz-García D (2020) Nanostructured metal oxides prepared from Schiff base metal complexes: Study of the catalytic activity in selective oxidation and C–C coupling reactions. Journal of Inorganic and Organometallic Polymers and Materials 30(5): 1293-1305. https://doi.org/10.1007/s10904-019-01269-y
[10] Kong Q, Zhang J, Zhang K, Wang S, He M, Guo Y, Gu J (2025) Recyclable side‐chain azobenzene‐based semicrystalline polymer films with outstanding intrinsic thermal conductivity and photoresponsive actuation. Angewandte Chemie 137(37): Advance online publication. https://doi.org/10.1002/ange.202512721
[11] Moody CJ (2004) Addition reactions of ROPHy/SOPHy oxime ethers: Asymmetric synthesis of nitrogen-containing compounds. Chemical Communications (12): 1341-1351.
[12] Escolano C, Amat M, Bosch J (2006) Chiral Oxazolopiperidone Lactams: Versatile Intermediates for the Enantioselective Synthesis of Piperidine-Containing Natural Products. Chem. - Eur. J 12: 8198-8207.
[13] Remuson R, Gelas-Mialhe Y (2008) A Convenient Access to the Piperidine Ring by Cyclization of Allylsilyl Substituted N-cyliminium and Iminium Ions: Application to the Synthesis of Piperidine Alkaloids. Mini-Reviews in Organic Chemistry 5(3): 193-208. https://doi.org/10.2174/157019308785161701
[14] Amat M, Llor N, Griera R, Pérez M, Bosch J (2011) Enantioselective synthesis of alkaloids from phenylglycinol-derived lactams. Natural Product Communications 6(4). https://doi.org/10.1177/1934578X1100600412
[15] Seki H, Georg GI (2014) 2,3-Dihydropyridin-4(1H)-ones and 3-aminocyclohex-2-enones: Synthesis, functionalization, and applications to alkaloid synthesis. Synlett 25(18): 2536-2557. https://doi.org/10.1055/s-0034-1378529
[16] Kandepedu N, Abrunhosa-Thomas I, Troin Y (2017) Stereoselective strategies for the construction of polysubstituted piperidinic compounds and their applications in natural products synthesis. Organic Chemistry Frontiers 4(8): 1655-1704. https://doi.org/10.1039/C7QO00262A
[17] Zhang W, Ai J, Shi D, Peng X, Ji Y, Liu J, Geng M, Li Y (2014) Discovery of Novel c-Met Inhibitors Bearing a 3-Carboxyl Piperidin-2-one Scaffold. Molecules 19(2): 2655-2673. https://doi.org/10.3390/molecules19022655
[18] Li L, Chen M, Jiang FC (2016) Design, synthesis, and evaluation of 2-piperidone derivatives for the inhibition of β-amyloid aggregation and inflammation mediated neurotoxicity. Bioorganic & Medicinal Chemistry 24(8): 1853-1865. https://doi.org/10.1016/j.bmc.2016.03.010
[19] Climent MJ, Corma A, Iborra S (2012) Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Advances 2(1): 16-58. https://doi.org/10.1039/C1RA00807B
[20] Takasu K, Shindoh N, Tokuyama H, Ihara M (2006) Catalytic imino Diels-Alder reaction by triflic imide and its application to one-pot synthesis from three components. Tetrahedron 62(51): 11900-11907. https://doi.org/10.1016/j.tet.2006.09.092
[21] Sales M, Charette AB (2005) A Diels-Alder Approach to the Stereoselective Synthesis of 2, 3, 5, 6-Tetra-and 2, 3, 4, 5, 6-Pentasubstituted Piperidines. Organic Letters 7(26): 5773-5776. https://doi.org/10.1021/ol052436v
[22] Carballo RM, Ramírez MA, Rodríguez ML, Martín VS, Padrón JI (2006) Iron (III)-promoted aza-Prins-cyclization: direct synthesis of six-membered azacycles. Organic Letters 8(17): 3837-3840. https://doi.org/10.1021/ol061448t
[23] Dobbs AP, Guesné SJ (2005) Rapid access to trans-2, 6-disubstituted piperidines: expedient total syntheses of (-)-solenopsin A and (+)-epi-dihydropinidine. Synlett (13): 2101-2103. https://doi.org/10.1055/s-2005-871956
[24] Fustero S, Jiménez D, Moscardó J, Catalan S, Del Pozo C (2007) Enantioselective organocatalytic intramolecular aza-Michael reaction: a concise synthesis of (+)-sedamine,(+)-allosedamine and (+)-coniine. Organic letters 9(25): 5283-5286. https://doi.org/10.1021/ol702447y
[25] Davis FA, Chao B, Rao A (2001) Intramolecular Mannich reaction in the asymmetric synthesis of polysubstituted piperidines: concise synthesis of the dendrobate alkaloid (+)-241D and its C-4 epimer. Organic Letters 3(20): 3169-3171. https://doi.org/10.1021/ol0164839
[26] Venkatesan P, Maruthavanan T (2015) Stereochemical effect on biological activities of new series of piperidin-4-one derivatives. Natural Product Research 29(22): 2092-2096. https://doi.org/10.1080/14786419.2015.1009456
[27] Casy AF, Coates JE, Rostron C (1976) Reversed ester analogues of pethidine: isomeric 4-acetoxy-1, 2, 6-trimethyl-4-phenyrpiperidines. Journal of Pharmacy and Pharmacology 28(2): 106-110. https://doi.org/10.1111/j.2042-7158.1976.tb04107.x
[28] Vijayakumar V, Sundaravadivelu M, Perumal S (2001) NMR and IR spectroscopic study of mono‐ bi‐ and tricyclic piperidone systems. Magnetic Resonance in Chemistry 39(2): 101-104. https://doi.org/10.1002/1097-458X(200102)39:2%3C101::AID-MRC797%3E3.0.CO;2-F
[29] Rajesh K, Reddy BP, Vijayakumar V (2012) Ultrasound-promoted synthesis of novel bipodal and tripodalpiperidin-4-ones and silica chloride mediated conversion to its piperidin-4-ols: Synthesis and structural confinements. Ultrasonics Sonochemistry 19(3): 522-531. https://doi.org/10.1016/j.ultsonch.2011.10.018
[30] Suresh T, Sarveswari S, Vijayakumar V, Iniyavan P, Srikanth A, Jasinski JP (2015) Synthesis, spectral characterization and DFT analysis for the validation of 2, 6 diaryl-piperidin-4-ones as potential sunscreens and UV filters. Journal of Molecular Structure 1099: 560-566. https://doi.org/10.1016/j.molstruc.2015.07.011
[31] Ahamed A, Arif I A, Mateen M, Kumar RS, Idhayadhulla A (2018) Antimicrobial, anticoagulant, and cytotoxic evaluation of multidrug resistance of new 1, 4-dihydropyridine derivatives. Saudi Journal of Biological Sciences 25(6): 1227-1235. https://doi.org/10.1016/j.sjbs.2018.03.001
[32] Subha Nandhini M, Vijayakumar V, Mostad A, Sundaravadivelu M, Natarajan S (2003) Ethyl 4-oxo-2, 6-diphenyl-4-piperidine-3-carboxylate. Structure Reports 59(11): 1672-1674. https://doi.org/10.1107/S1600536803021792
[33] Vijayakumar V, Rajesh K, Suresh J, Narasimhamurthy T, Lakshman PN (2010) 1, 1′-(p-Phenylenedimethylene) dipiperidin-4-one. Structure Reports 66(1): 170. https://doi.org/10.1107/S1600536809052908.
[34] Rajarajan G, Dhineshkumar E, Amala S, Thanikachalam V, Selvanayagam S, Sridhar B (2020) Synthesis, spectral characterization (FT-IR, NMR, XRD) and computational studies of chloroacetyl chloride incorporated 3t-butyl-2r, 6c-diphenyl/di (thiophen-2-yl) piperidin-4-ones. Journal of Molecular Structure 1200: 127076. https://doi.org/10.1016/j.molstruc.2019.127076
[35] Rajesh K, Vijayakumar V, Sarveswari S, Narasimhamurthy T, Tiekink ER (2010) 1-{3-[(4-Oxopiperidin-1-yl) carbonyl] benzoyl} piperidin-4-one. Structure Reports 66(8): 1988. https://doi.org/10.1107/s1600536810026681.
[36] Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA (2017) The essential medicinal chemistry of curcumin: miniperspective. Journal of medicinal chemistry 60(5): 1620-1637.https://doi.org/10.1021/acs.jmedchem.6b00975
[37] Dimmock JR, Jha A, Zello GA, Quail JW, Oloo EO, Nienaber KH, Stables JP (2002) Cytotoxic N-[4-(3-aryl-3-oxo-1-propenyl) phenylcarbonyl]-3, 5-bis (phenylmethylene)-4-piperidones and related compounds. European journal of medicinal chemistry 37(12):961-972.https://doi.org/10.1016/S0223-5234(02)01414-9
[38] Martínez-Cifuentes M, Weiss-López B, Araya-Maturana R (2016) A computational study of structure and reactivity of N-substitued-4-piperidones curcumin analogues and their radical anions. Molecules 21:1-10. https://doi.org/10.3390/molecules21121658
[39] Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88: 899-926. https://doi.org/10.1021/cr00088a005
[40] Noller CR, Balliah V (1948) Preparation of some piperidine derivatives by the Mannich reaction. J Am Chem Soc 70: 3853-3855.
[41] Nagendra Babu K, Vallal Perumal G, Rajarajan G, Manikandan G, Thanikachalam V (2023) Thermal vaporization of (E)-methyl-2-hydroxy-5-(phenyldiazenyl)benzoate under non-isothermal condition in air atmosphere. Gravida Review J 9 (11): 550-573.
[42] Friedman HL (1963) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C: Polym Lett 6: 183-195. https://doi.org/10.1002/polc.5070060121
[43] Flynn JH, Wall LA (1966) General treatment of the thermogravimetry of Polymers. J Res Natl Bur Stand Sect A 70: 487-523. https://doi.org/10.6028/jres.070A.043
[44] Akahira T, Sunose T (1971) Joint convention of four electrical institutes. Res Rep Chiba Inst Technol 16: 22-31.
[45] Coats AW Redfern JP (1964) Kinetic parameters from thermogravimetric data. Nature 201: 68-69. https://doi.org/10.1038/201068a0
[46] Lesnikovich AI, Levchik SV (1983) A method of finding invariant values of kinetic parameters. J Therm Anal 27: 89-93. https://doi.org/10.1007/BF01907324
[47] Lesnikovich AI, Levchik SV (1985) Isoparametric kinetic relations for chemical transformations in condensed substances (Analytical Survey). J Therm Anal 30: 237-262. https://doi.org/10.1007/bf02128134
[48] Vyazovkin S, Lesnikovich AI (1988) Estimation of the pre-exponential factor in the isoconversional calculation of effective kinetic parameters. Thermochim Acta 128: 297-300. https://doi.org/10.1016/0040-6031(88)85372-3.
[49] Cai J, Li LS (2009) Kinetic Analysis of wheat straw pyrolysis using isoconversional methods. J Therm Anal Calorim 98: 325-330. https://doi.org/10.1007/s10973-009-0325-8
[50] Malek J (1992) The Kinetic analysis of non-isothermal data. Thermochim Acta 200: 257-269. https://doi.org/10.1016/0040-6031(92)85118-F
[51] Sbirrazzuoli N, Vecchio S, Catalani A (2005) Isoconversional kinetic study of alachlor and metolachlor vaporization by thermal analysis. Int J Chem Kinet 37:74-80. https://doi.org/10.1002/kin.20054
[52] Busto Y, Tack FMG, Peralta L M, Cabrera X, Arteaga-Perez LE (2013) An Investigation on the modelling of kinetics of thermal decomposition of hazardous mercury wastes. J Hazard Mater 260: 358-367. https://doi.org/10.1016/j.jhazmat.2013.05.045
Published
2025-09-22
How to Cite
G.Vallal Perumal, V.J.Ramya Devi, G.Rajarajan, & V.Thanikachalam. (2025). Thermal decomposition of 3-butyl-2,6-bis(4-fluorophenyl)piperidin-4-one in nitrogen atmosphere-Non-isothermal condition. Revista Electronica De Veterinaria, 25(1), 4207-4218. https://doi.org/10.69980/redvet.v25i1.2169
Section
Articles