Isolation and Screening of Heavy Metal-Resistant Bacteria from Hasdeo River Sediments

  • Sadhana Gupta
  • Bhagyashree Deshpande
  • Bhawana Pandey
Keywords: Bioremediation, bacterial isolates, resistance profiles, environmental pollution.

Abstract

The increasing contamination of aquatic ecosystems with heavy metals poses significant environmental and health risks. Microorganisms, particularly bacteria, possess the remarkable ability to resist and detoxify heavy metals, making them potential candidates for bioremediation strategies. This study aimed to isolate and screen heavy metal-resistant bacteria from the sediments of the Hasdeo River, a site impacted by industrial activities and pollution. Sediment samples were collected from various locations along the river, and bacterial isolates were cultured and screened for resistance to a range of heavy metals. The isolates were characterized based on their growth patterns in the presence of different concentrations of heavy metals, with their resistance profiles assessed through optical density measurements. The study successfully identified  bacterial strains exhibiting significant resistance to heavy metals, highlighting their potential for use in bioremediation applications. The findings provide valuable insights into the microbial diversity present in river sediments and underscore the role of bacteria as nature’s defenders against environmental pollution.

 

Author Biographies

Sadhana Gupta

School of Sciences, MATS University, Raipur, Chhattisgarh

Bhagyashree Deshpande

School of Sciences, MATS University, Raipur, Chhattisgarh

Bhawana Pandey

Dept. of Biotechnology and Microbiology,  Bhilai Mahila Mahavidyalaya, Bhilai, Chhattisgarh

References

• Andrews, J. M. (2001). Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy, 48(1), 5-16.
• Andrews, S. C., Robinson, A. K., & Rodríguez-Quínones, F. (2003). Bacterial iron homeostasis. FEMS Microbiology Reviews, 27(2-3), 215-237.
• APHA (American Public Health Association). (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). American Public Health Association.
• Archibald, F. S., & Duong, M. N. (1986). Manganese acquisition by Lactobacillus plantarum. Journal of Bacteriology, 167(1), 30-38.
• Bauer, A. W., Kirby, W. M. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493-496.
• Bergey’s Manual of Systematic Bacteriology. (2005). Springer.
• Braud, A., Jézéquel, K., Léger, M. A., & Lebeau, T. (2010). Iron bioavailability and its uptake by Pseudomonas aeruginosa: involvement in biofilm formation and virulence. Environmental Microbiology, 12(5), 1341-1353.
• Bruins, M. R., Kapil, S., & Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and Environmental Safety, 45(3), 198-207.
• Bush, K., & Bradford, P. A. (2016). β-Lactams and β-lactamase inhibitors: An overview. Cold Spring Harbor Perspectives in Medicine, 6(8), a025247.
• Campbell, E. A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A., & Darst, S. A. (2001). Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell, 104(6), 901-912.
• Chauhan, A., Sharma, P., & Soni, S. (2020). Heavy Metal Contamination in Water Resources of Hasdeo River Basin, Chhattisgarh. Environmental Science and Pollution Research, 27(15), 18725-18734.
• Dewangan S, Mundeja P and Deshpande B (2024) Biological Remediation of Rice Mill Wastewater with Pichia pastoris: Optimization Approaches. Afr.J.Bio.Sc. 6(1): 601-610.
• Dewangan S, Mundeja P, Deshpande B and Roy V (2023) Enhanced Physical Method of Remediating Rice Mill Effluent. International Journal of Applied Engineering & Technology, 5(2): 410-421.
• Gadd, G. M. (2010). Metals, minerals, and microbes: Geomicrobiology and bioremediation. Microbiology, 156(3), 609–643.
• Ghosh, S., Bagheri, B., Sharma, P., & Singh, A. K. (2003). Thermotolerance mechanisms in bacteria. Microbiology Research, 158(1), 101-111.
• Ghuysen, J. M. (1991). Serine β-lactamases and penicillin-binding proteins. Annual Review of Microbiology, 45(1), 37-67.
• Giller, K. E., Witter, E., & McGrath, S. P. (2009). Heavy metals and soil microbes. Soil Biology and Biochemistry, 41(10), 2031-2037.
• Green, M. R., & Sambrook, J. (2019). Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press.
• Gupta, R., & Ramnani, P. (2006). Microbial keratinases and their prospective applications. Applied Microbiology and Biotechnology, 70(1), 21-33.
• Gupta, R., Gigras, P., Mohapatra, H., Goswami, V. K., & Chauhan, B. (2003). Microbial amylases: A biotechnological perspective. Process Biochemistry, 38(11), 1599-1616.
• Imlay, J. A. (2013). The molecular mechanisms and physiological consequences of oxidative stress: Lessons from a model bacterium. Nature Reviews Microbiology, 11(7), 443-454.
• Kavamura, V. N., & Esposito, E. (2010). Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnology Advances, 28(1), 61–69.
• Kotrba, P., Najmanová, J., Mátl, M., Macek, T., & Ruml, T. (2011). Heavy metal resistance in Pseudomonas spp. and use of this genus in bioremediation and biorecovery. Journal of Applied Microbiology, 111(3), 612-627.
• Kumar, A., Maiti, S. K., & Prasad, M. N. V. (2016). Lead-resistant bacterial strains and their potential for bioremediation. Environmental Science and Pollution Research, 23(7), 6488-6498.
• Liu, Y., Wang, L., & Zhang, X. (2016). Bioremediation of Heavy Metal Contaminated Soils Using Microorganisms. Science of the Total Environment, 566, 1217-1226.
• Livermore, D. M. (2000). Antibiotic resistance in bacteria: An overview. British Medical Journal, 317(7159), 175-179.
• Madigan, M. T., & Martinko, J. M. (2006). Brock biology of microorganisms. Pearson Prentice Hall.
• Malik, A. (2004). Metal bioremediation through growing cells. Environmental International, 30(2), 261–278.
• Nies, D. H. (1999). Microbial heavy-metal resistance. Applied Microbiology and Biotechnology, 51(6), 730-750.
• Rajwade D and Deshpande B (2023) Decolourization of Industrial Dyes Using A White Rot Fungi Lentinus Edodes. International Journal of Applied Engineering & Technology, 5(2): 468-481.
• Rajwade D and Deshpande B (2024) Decolourization of Rhodamine B and Remazol Brilliant Blue by crude enzyme extract from Ganoderma lucidum. Afr.J.Bio.Sc. 6(1): 718-728.
• Rauf, M., Anwar, S., & Ahmad, S. (2017). Bioremediation of Heavy Metal Contaminated Water: A Review. Journal of Environmental Chemical Engineering, 5(2), 1795-1804.
• Roane, T. M., & Pepper, I. L. (2000). Microorganisms and metal pollutants. Environmental Microbiology, 3, 35–49.
• Sahl, H. G., & Bierbaum, G. (1998). Lantibiotics: Biosynthesis and biological activities of uniquely modified peptides from Gram-positive bacteria. Annual Review of Microbiology, 52(1), 41-79.
• Sarma, B. K., Kumar, M., & Kumar, A. (2018). Bacterial Bioremediation of Heavy Metals: A Review. Environmental Science and Pollution Research, 25(3), 3452-3466.
• Sarma, B. K., Patel, K., & Sharma, S. (2019). Heavy Metal-Resistant Microbial Strains and Their Potential for Bioremediation. Environmental Pollution, 254, 113056.
• Schmidt, A., Haferburg, G., & Kothe, E. (2005). Metal resistance mechanisms in actinobacteria for survival in heavy metal-contaminated environments. International Microbiology, 8(3), 177–185.
• Sharma, P., Goel, R., & Capalash, N. (2018). Bacterial proteases: Industrial applications and role in pathogenicity. Applied Microbiology and Biotechnology, 102(11), 4805-4818.
• Silver, S., & Phung, L. T. (2005). Bacterial heavy metal resistance: new surprises. Annual Review of Microbiology, 59, 643-689.
• Singh, H., Kaur, G., & Singh, S. (2011). Bioremediation of metal-contaminated sites using pH-resistant bacteria. Environmental Science and Pollution Research, 18(7), 1076-1083.
• Su, H., Su, J., Sun, W., Wei, Y., & Wang, Y. (2015). Bioremediation of manganese-contaminated groundwater by bacterial manganese oxidation in a pilot-scale reactor. Bioresource Technology, 177, 287-292.
• Touati, D. (2000). Iron and oxidative stress in bacteria. Archives of Biochemistry and Biophysics, 373(1), 1-6.
How to Cite
Sadhana Gupta, Bhagyashree Deshpande, & Bhawana Pandey. (1). Isolation and Screening of Heavy Metal-Resistant Bacteria from Hasdeo River Sediments. Revista Electronica De Veterinaria, 25(1), 4111-4117. https://doi.org/10.69980/redvet.v25i1.2112
Section
Articles