Phytochemical Profile, Antibacterial Efficacy, and Antioxidant Potential of Eight Ethnomedicinal Plants: A Solvent-Dependent Study
Abstract
As the global challenge of antimicrobial resistance grows, the scientific validation of traditional plant-based medicines for novel therapeutic compounds has become increasingly vital. This study comprehensively evaluated the phytochemical profile, antibacterial efficacy, and antioxidant potential of five solvent extracts (methanol, ethanol, ethyl acetate, water, and DMSO) from eight Indian ethnomedicinal plants: Macaranga peltata, Uvaria narum, Papaver somniferum, Colocasia esculenta, Cyperus rotundus, Cleome viscosa, Strychnos nux vomica, and Abutilon indicum. The results demonstrated significant solvent-dependent bioactivity, with ethyl acetate extracts of Colocasia esculenta and Strychnos nux vomica exhibiting the most potent antibacterial activity, showing inhibition zones up to 26 mm against pathogens like Pseudomonas aeruginosa and Streptococcus aureus. Phytochemical screening confirmed the presence of key secondary metabolites such as flavonoids and tannins, with methanol proving most effective for broad-spectrum extraction and yielding the highest total phenolic content in Macaranga peltata. In antioxidant assays, the methanolic extract of Colocasia esculenta and the ethyl acetate extract of Cyperus rotundus displayed exceptional DPPH radical scavenging capacity, with some values surpassing the ascorbic acid standard. Overall, the investigation validates the ethnopharmacological uses of these plants, underscores the critical role of solvent selection, and identifies Colocasia esculenta, Strychnos nux vomica, and Cyperus rotundus as highly promising sources for developing novel antimicrobial and antioxidant therapeutics.
References
2. Balciunaitiene, A., Viskelis, P., Viskelis, J., Streimikyte, P., Liaudanskas, M., Bartkiene, E., ... & Lele, V. (2021). Green synthesis of silver nanoparticles using extract of Artemisia absinthium L., Humulus lupulus L. and Thymus vulgaris L., physico-chemical characterization, antimicrobial and antioxidant activity. Processes, 9(8), 1304. https://doi.org/10.3390/pr9081304.
3. Barbieri, R., Coppo, E., Marchese, A., Daglia, M., Sobarzo-Sánchez, E., Nabavi, S. F., & Nabavi, S. M. (2017). Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiological research, 196, 44-68.
4. Bharti, P., Singh, M., & Singh, A. K. (2023). Role of Ahiphena (Papaver sominiferum) in modern and ancient treatment. Journal of Ayurveda and Integrated Medical Sciences, 8(10), 164-166.
5. Cushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343–356.
6. Dhanani, T., et al. (2017). Evaluation of different extraction methods for isolation of bioactive compounds from Boswellia serrata oleo-gum-resin. Indian Journal of Pharmaceutical Sciences, 79(1), 29–36.
7. Do, Q. D., et al. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 296–302.
8. Elmosallamy, A., Eltawil, N., Ibrahim, S., & Hussein, S. A. A. (2021). Phenolic Profile: Antimicrobial activity and antioxidant capacity of Colocasia esculenta (L.) Schott. Egyptian journal of chemistry, 64(4), 2165-2172.
9. Ezez, D., Mekonnen, N., & Tefera, M. (2023). Phytochemical analysis of Withania somnifera leaf extracts by GC-MS and evaluating antioxidants and antibacterial activities. International Journal of Food Properties, 26(1), 581-590.
10. Ghasemzadeh, A., Jaafar, H.Z.E., & Rahmat, A. (2012). Antioxidant activities, total phenolics and flavonoids content in two varieties of Malaysian young ginger (Zingiber officinale Roscoe). Molecules, 17(6), 6683–6694.
11. Harborne, J. B. (1998). Phytochemical methods: A guide to modern techniques of plant analysis. Springer.
12. Hedayati-Moghadam, M., Moezi, S. A., Kazemi, T., Sami, A., Akram, M., Zainab, R., & Khazdair, M. R. (2022). The effects of Papaver somniferum (opium poppy) on health, its controversies and consensus evidence. Toxin reviews, 41(3), 1030-1043.
13. Jalil, J., Attiq, A., Hui, C. C., Yao, L. J., & Zakaria, N. A. (2020). Modulation of inflammatory pathways, medicinal uses and toxicities of Uvaria species: potential role in the prevention and treatment of inflammation. Inflammopharmacology, 28, 1195-1218.
14. Johari, S., MPharm PhD, Joshi, C., PhD, & Gandhi, T., MPharm PhD (2016). Effect of Cyperus Rotundus on Cytokine Gene Expression in Experimental Inflammatory Bowel Disease. Iranian journal of medical sciences, 41(5), 391–398.
15. Kumar, R., Sharma, R., Thakur, M. S., Saxena, S., & Kaur, A. (2022). Comparative study of phytochemicals, antioxidant activities and chromatographic profiling of different parts of Lycium ruthenicum Murr of Trans-Himalayan region. Phytomedicine Plus, 2(4), 100339.
16. Nascimento, G. G. F., et al. (2000). Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Brazilian Journal of Microbiology, 31(4), 247–256.
17. Negasa, J. G., Teshome, I., Sarba, E. J., & Daro, B. S. (2024). Phytochemical screening and in vitro antibacterial activity of Echinops kebericho Mesfin tuber extracts: experimental studies. PeerJ, 12, e18554.
18. Nguyen, T. T., & Nguyen, M. H. (2020). Solvent polarity and extraction time impact on flavonoid extraction efficiency from green tea. Journal of Food Processing and Preservation, 44(6), e14436.
19. Nizar, A., Ravindran, R., Palani, J., Nripan, T., Asha, S. D., & Pynadath, M. K. (2024). Anticancer effects of ethanolic extracts of Macaranga peltata leaves on human oral squamous carcinoma cell lines: An in vitro study. Journal of Pharmacy and Bioallied Sciences, 16(Suppl 2), S1833-S1837.
20. Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47.
21. Pandit, R., Gaikwad, S., & Rai, M. (2017). Biogenicfabrication of CuNPs, Cu bioconjugates and in vitro assessment of antimicrobial and antioxidant activity. IET Nanobiotechnology, 11(5), 624–630. https://doi.org/10.1049/iet-nbt.2016.0165
22. Parekh, J., & Chanda, S. (2007). In vitro antimicrobial activity and phytochemical analysis of some Indian medicinal plants. Turkish Journal of Biology, 31(1), 53–58.
23. Rocha, F. G., Brandenburg, M. M., Pawloski, P. L., Soley, B. D. S., Costa, S. C. A., Meinerz, C. C., Baretta, I. P., Otuki, M. F., & Cabrini, D. A. (2020). Preclinical study of the topical anti-inflammatory activity of Cyperus rotundus L. extract (Cyperaceae) in models of skin inflammation. Journal of ethnopharmacology, 254, 112709. https://doi.org/10.1016/j.jep.2020.112709.
24. Rokkam, R., Pinipay, F., Bollavarapu, A., Rapaka, G., Botcha, S., & Tamanam, R. (2022). Phytochemical investigation, antioxidant profiling and GCMS analysis of Cajanus scarabaeoides seed extracts. Journal of Food Chemistry & Nanotechnology, 8(4), 147-161.
25. Salam, M. A., Al-Amin, M. Y., Salam, M. T., Pawar, J. S., Akhter, N., Rabaan, A. A., & Alqumber, M. A. (2023, January). Antimicrobial resistance: a growing serious threat for global public health. In Healthcare (Vol. 11, No. 13, p. 1946). Multidisciplinary Digital Publishing Institute.
26. Sallam, N. M., Ali, E. F., Abo-Elyousr, K. A., Bereika, M. F., & Seleim, M. A. (2021). Thyme oil treatment controls bacterial wilt disease symptoms by inducing antioxidant enzyme activity in Solanum tuberosum. Journal of Plant Pathology, 103, 563-572.
27. Santos, N. C., et al. (2018). The use of DMSO to dissolve lipidic compounds: a cautionary note. Biophysical Reviews, 10(4), 1031–1033.
28. Sudhakar, M., Rao, C.hV., Rao, P. M., & Raju, D. B. (2006). Evaluation of antimicrobial activity of Cleome viscosa and Gmelina asiatica. Fitoterapia, 77(1), 47–49. https://doi.org/10.1016/j.fitote.2005.08.003
29. Sunil, M., Vedavijaya, T., Sayana, S. B., & Podila, K. S. (2023). Phytochemical analysis and antioxidant evaluation of the ethanolic extract of the leaves of Abutilon indicum. Cureus, 15(10).
30. Tiwari, P., et al. (2011). Phytochemical screening and extraction: A review. International Pharmaceutica Sciencia, 1(1), 98–106.
31. Evans, W. C. (2009). Trease and Evans Pharmacognosy. Edinburgh; New York: Saunders. Elsevier. 16th Edition-May, 27, 2009..
32. Valgas, C., Souza, S. M. D., Smânia, E. F., & Smânia Jr, A. (2007). Screening methods to determine antibacterial activity of natural products. Brazilian journal of microbiology, 38, 369-380.
33. Vikhe, S., Ahire, M., & Vikhe, R. (2024). Phytochemical Investigation and Antiulcer Potential of Strychnos Nux vomica Seed Extract in Adult Wistar Rats. Int. J. Exp. Res. Rev, 45, 83-95.
34. Wong, C.C., Li, H.B., Cheng, K.W., & Chen, F. (2006). A systematic survey of antioxidant activity of 30 Chinese medicinal plants using the ferric reducing antioxidant power assay. Food Chemistry, 97(4), 705–711.
35. Yadav, R. N. S., & Agarwala, M. (2011). Phytochemical analysis of some medicinal plants. Journal of Phytology, 3(12), 10–14.