Therapeutic Potential Of Neem (Azadirachta Indica): A Review Of Its Bioactive Compounds And Anticancer Properties.

  • Anil Kumar
Keywords: Anti-cancer, Anti-inflammatory bioactive compounds, Phytoconstituents, Cell Cycle

Abstract

The neem tree, native to the Indian subcontinent, has been pivotal in traditional medicine for ages. Neem, scientifically known as Azadirachta indica, contains a multitude of useful chemicals that are being investigated for their anti-cancer properties. The anticancer properties of these drugs, highlighting their unique structural features and methods of action. Azadirachtin, once acknowledged for its pesticidal properties, has novel potential as an anti-inflammatory and anticancer drug. Phytoconstituents like Gedunin, acting as an HSP90 inhibitor, demonstrates significant effects on gastric cancer cells. Nimbin, classified as a limonoid, exhibits protective properties against oxidative stress, especially in circumstances such as polycystic ovarian syndrome. Beta-sitosterol, a triterpenoid, is examined for its capacity to induce apoptosis in several cancer cells. This review thoroughly examines their modes of action, including apoptotic induction, caspase activation, cell cycle arrest, and signaling pathway regulation, so providing a solid basis for future research and development efforts. The findings suggest that neem may serve as a viable complementary or alternative therapy in the broad field of cancer treatment. This review examines the bioactive compounds derived from the neem tree and their potential applications in cancer treatment. The focus is on its bioactive constituents, including limonoids, triterpenoids, and quinones, highlighting essential components such as azadirachtin, gedunin, nimbin, and beta-sitosterol.

Author Biography

Anil Kumar

Associate Professor, University Institute of Biotechnology, Chandigarh, University, Gharuan, Mohali - 140413, Punjab, India. 

References

M. A. Alzohairy, ‘Therapeutics Role of Azadirachta indica (Neem) and Their Active Constituents in Diseases Prevention and Treatment’, Evid.-Based Complement. Altern. Med. ECAM, vol. 2016, p. 7382506, 2016, doi: 10.1155/2016/7382506.

S. Nagini, M. Palrasu, and A. Bishayee, ‘Limonoids from neem (Azadirachta indica A. Juss.) are potential anticancer drug candidates’, Med. Res. Rev., Aug. 2023, doi: 10.1002/med.21988.

T. M. Braga et al., ‘Biological Activities of Gedunin—A Limonoid from the Meliaceae Family’, Molecules, vol. 25, no. 3, p. 493, Jan. 2020, doi: 10.3390/molecules25030493.

M. T. Smith, ‘Quinones as mutagens, carcinogens, and anticancer agents: introduction and overview’, J. Toxicol. Environ. Health, vol. 16, no. 5, pp. 665–672, 1985, doi: 10.1080/15287398509530776.

S. Kumar, V. Mulchandani, and J. Das Sarma, ‘Methanolic neem (Azadirachta indica) stem bark extract induces cell cycle arrest, apoptosis and inhibits the migration of cervical cancer cells in vitro’, BMC Complement. Med. Ther., vol. 22, p. 239, Sep. 2022, doi: 10.1186/s12906-022-03718-7.

S. Agrawal, D. Bablani Popli, K. Sircar, and A. Chowdhry, ‘A review of the anticancer activity of Azadirachta indica (Neem) in oral cancer’, J. Oral Biol. Craniofacial Res., vol. 10, no. 2, pp. 206–209, 2020, doi: 10.1016/j.jobcr.2020.04.007.

S. Nagini, R. Nivetha, M. Palrasu, and R. Mishra, ‘Nimbolide, a Neem Limonoid, Is a Promising Candidate for the Anticancer Drug Arsenal’, J. Med. Chem., vol. 64, no. 7, pp. 3560–3577, Apr. 2021, doi: 10.1021/acs.jmedchem.0c02239.

S. R. Fernandes et al., ‘Chemistry, bioactivities, extraction and analysis of azadirachtin: State-of-the-art’, Fitoterapia, vol. 134, pp. 141–150, Apr. 2019, doi: 10.1016/j.fitote.2019.02.006.

A. John and H. Raza, ‘Azadirachtin Attenuates Lipopolysaccharide-Induced ROS Production, DNA Damage, and Apoptosis by Regulating JNK/Akt and AMPK/mTOR-Dependent Pathways in Rin-5F Pancreatic Beta Cells’, Biomedicines, vol. 9, no. 12, Art. no. 12, Dec. 2021, doi: 10.3390/biomedicines9121943.

A. John and H. Raza, ‘Alterations in Inflammatory Cytokines and Redox Homeostasis in LPS-Induced Pancreatic Beta-Cell Toxicity and Mitochondrial Stress: Protection by Azadirachtin’, Front. Cell Dev. Biol., vol. 10, p. 867608, Jun. 2022, doi: 10.3389/fcell.2022.867608.

H. Zhou, F. Li, and Y. Li, ‘Anti-Cancer Activity of Gedunin by Induction of Apoptosis in Human Gastric Cancer AGS Cells’, Appl. Biochem. Biotechnol., vol. 194, no. 11, pp. 5322–5332, Nov. 2022, doi: 10.1007/s12010-022-04001-8.

C. A. Patwardhan, A. Fauq, L. B. Peterson, C. Miller, B. S. J. Blagg, and A. Chadli, ‘Gedunin Inactivates the Co-chaperone p23 Protein Causing Cancer Cell Death by Apoptosis *♦’, J. Biol. Chem., vol. 288, no. 10, pp. 7313–7325, Mar. 2013, doi: 10.1074/jbc.M112.427328.

R. Sahai et al., ‘Gedunin isolated from the mangrove plant Xylocarpus granatum exerts its anti-proliferative activity in ovarian cancer cells through G2/M-phase arrest and oxidative stress-mediated intrinsic apoptosis’, Apoptosis, vol. 25, no. 7, pp. 481–499, Aug. 2020, doi: 10.1007/s10495-020-01605-5.

G. Sudhakaran et al., ‘Nimbin (N1) and analog N3 from the neem seeds suppress the migration of osteosarcoma MG-63 cells and arrest the cells in a quiescent state mediated via activation of the caspase-modulated apoptotic pathway’, Mol. Biol. Rep., vol. 50, no. 9, pp. 7357–7369, Sep. 2023, doi: 10.1007/s11033-023-08627-7.

G. Sudhakaran et al., ‘Nimbin analog N2 alleviates high testosterone induced oxidative stress in CHO cells and alters the expression of Tox3 and Dennd1a signal transduction pathway involved in the PCOS zebrafish’, Phytother. Res. PTR, vol. 37, Dec. 2022, doi: 10.1002/ptr.7685.

G. Sudhakaran, A. Guru, B. Hari Deva Muthu, R. Murugan, A. Arshad, and J. Arockiaraj, ‘Evidence-based hormonal, mutational, and endocrine-disrupting chemical-induced zebrafish as an alternative model to study PCOS condition similar to mammalian PCOS model’, Life Sci., vol. 291, p. 120276, Feb. 2022, doi: 10.1016/j.lfs.2021.120276.

S. Bhambhani et al., ‘Transcriptome and metabolite analyses in Azadirachta indica: identification of genes involved in biosynthesis of bioactive triterpenoids’, Sci. Rep., vol. 7, p. 5043, Jul. 2017, doi: 10.1038/s41598-017-05291-3.

P. Suttiarporn, W. Chumpolsri, S. Mahatheeranont, S. Luangkamin, S. Teepsawang, and V. Leardkamolkarn, ‘Structures of Phytosterols and Triterpenoids with Potential Anti-Cancer Activity in Bran of Black Non-Glutinous Rice’, Nutrients, vol. 7, no. 3, pp. 1672–1687, Mar. 2015, doi: 10.3390/nu7031672.

T. Rajavel, P. Packiyaraj, V. Suryanarayanan, S. K. Singh, K. Ruckmani, and K. Pandima Devi, ‘β-Sitosterol targets Trx/Trx1 reductase to induce apoptosis in A549 cells via ROS mediated mitochondrial dysregulation and p53 activation’, Sci. Rep., vol. 8, no. 1, Art. no. 1, Feb. 2018, doi: 10.1038/s41598-018-20311-6.

B. C. Baguley, ‘The paradox of cancer cell apoptosis’, Front. Biosci. Landmark Ed., vol. 16, no. 5, pp. 1759–1767, Jan. 2011, doi: 10.2741/3819.

J. Baeka, H.-S. Rohb, C.-I. Choi, K.-H. Baekb, and K. H. Kim, ‘Raphanus sativus Sprout Causes Selective Cytotoxic Effect on p53-Deficient Human Lung Cancer Cells in vitro’, Nat. Prod. Commun., vol. 12, no. 2, pp. 237–240, Feb. 2017.

X. Bao, Y. Zhang, H. Zhang, and L. Xia, ‘Molecular Mechanism of β-Sitosterol and its Derivatives in Tumor Progression’, Front. Oncol., vol. 12, p. 926975, Jun. 2022, doi: 10.3389/fonc.2022.926975.

D. E. Babatunde, G. O. Otusemade, M. Elizabeth, O. Agboola, E. Oyeniyi, and K. D. Akinlabu, ‘ANTIMICROBIAL ACTIVITY AND PHYTOCHEMICAL SCREENING OF NEEM LEAVES AND LEMON GRASS ESSENTIAL OIL EXTRACTS’.

M. M. Rahman et al., ‘Naphthoquinones and derivatives as potential anticancer agents: An updated review’, Chem. Biol. Interact., vol. 368, p. 110198, Dec. 2022, doi: 10.1016/j.cbi.2022.110198.

‘Azadirone, a Limonoid Tetranortriterpene, Induces Death Receptors and Sensitizes Human Cancer Cells to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) through a p53 Protein-independent Mechanism - PMC’. Accessed: Dec. 24, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3820870/

M. Kashif, Y. Hwang, W.-J. Kim, and G. Kim, ‘In-vitro Morphological Assessment of Apoptosis Induced by Nimbolide; A Limonoid from Azadirachta indica (Neem Tree)’, Iran. J. Pharm. Res. IJPR, vol. 18, no. 2, pp. 846–859, 2019, doi: 10.22037/ijpr.2019.2391.

N. Yadav et al., ‘Mechanism of neem limonoids-induced cell death in cancer: role of oxidative phosphorylation’, Free Radic. Biol. Med., vol. 90, pp. 261–271, Jan. 2016, doi: 10.1016/j.freeradbiomed.2015.11.028.

S. Goldar, M. S. Khaniani, S. M. Derakhshan, and B. Baradaran, ‘Molecular mechanisms of apoptosis and roles in cancer development and treatment’, Asian Pac. J. Cancer Prev. APJCP, vol. 16, no. 6, pp. 2129–2144, 2015, doi: 10.7314/apjcp.2015.16.6.2129.

S. Elmore, ‘Apoptosis: a review of programmed cell death’, Toxicol. Pathol., vol. 35, no. 4, pp. 495–516, Jun. 2007, doi: 10.1080/01926230701320337.

R. Jan and G.-S. Chaudhry, ‘Understanding Apoptosis and Apoptotic Pathways Targeted Cancer Therapeutics’, Adv. Pharm. Bull., vol. 9, no. 2, pp. 205–218, Jun. 2019, doi: 10.15171/apb.2019.024.

S. Ghavami, C. Kerkhoff, M. Los, M. Hashemi, C. Sorg, and F. Karami-Tehrani, ‘Mechanism of apoptosis induced by S100A8/A9 in colon cancer cell lines: the role of ROS and the effect of metal ions’, J. Leukoc. Biol., vol. 76, no. 1, pp. 169–175, Jul. 2004, doi: 10.1189/jlb.0903435.

J. F. Kerr, A. H. Wyllie, and A. R. Currie, ‘Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics’, Br. J. Cancer, vol. 26, no. 4, pp. 239–257, Aug. 1972, doi: 10.1038/bjc.1972.33.

R. V. Priyadarsini, R. S. Murugan, P. Sripriya, D. Karunagaran, and S. Nagini, ‘The neem limonoids azadirachtin and nimbolide induce cell cycle arrest and mitochondria-mediated apoptosis in human cervical cancer (HeLa) cells’, Free Radic. Res., vol. 44, no. 6, pp. 624–634, Jun. 2010, doi: 10.3109/10715761003692503.

M. K. Roy, M. Kobori, M. Takenaka, K. Nakahara, H. Shinmoto, and T. Tsushida, ‘Inhibition of colon cancer (HT-29) cell proliferation by a triterpenoid isolated from Azadirachta indica is accompanied by cell cycle arrest and up-regulation of p21’, Planta Med., vol. 72, no. 10, pp. 917–923, Aug. 2006, doi: 10.1055/s-2006-946694.

S. K. Chaube, T. G. Shrivastav, M. Tiwari, S. Prasad, A. Tripathi, and A. K. Pandey, ‘Neem (Azadirachta indica L.) leaf extract deteriorates oocyte quality by inducing ROS-mediated apoptosis in mammals’, SpringerPlus, vol. 3, p. 464, 2014, doi: 10.1186/2193-1801-3-464.

R. Nivetha et al., ‘Nimbolide, a Neem Limonoid, Inhibits Angiogenesis in Breast Cancer by Abrogating Aldose Reductase Mediated IGF-1/PI3K/Akt Signalling’, Anticancer Agents Med. Chem., vol. 22, no. 14, pp. 2619–2636, 2022, doi: 10.2174/1871520622666220204115151.

R. V. Priyadarsini, P. Manikandan, G. H. Kumar, and S. Nagini, ‘The neem limonoids azadirachtin and nimbolide inhibit hamster cheek pouch carcinogenesis by modulating xenobiotic-metabolizing enzymes, DNA damage, antioxidants, invasion and angiogenesis’, Free Radic. Res., vol. 43, no. 5, pp. 492–504, Jan. 2009, doi: 10.1080/10715760902870637.

‘Pretreatment with black tea polyphenols modulates xenobiotic-metabolizing enzymes in an experimental oral carcinogenesis model - PubMed’. Accessed: Dec. 25, 2023. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/18543609/

A. Arumugam et al., ‘Neem leaf extract inhibits mammary carcinogenesis by altering cell proliferation, apoptosis, and angiogenesis’, Cancer Biol. Ther., vol. 15, no. 1, pp. 26–34, Jan. 2014, doi: 10.4161/cbt.26604.

J. F. Islas et al., ‘An overview of Neem (Azadirachta indica) and its potential impact on health’, J. Funct. Foods, vol. 74, p. 104171, Nov. 2020, doi: 10.1016/j.jff.2020.104171.

C. R. Stubberfield and G. M. Cohen, ‘Interconversion of NAD(H) TO NADP(H): A cellular response to quinone-induced oxidative stress in isolated hepatocytes’, Biochem. Pharmacol., vol. 38, no. 16, pp. 2631–2637, Aug. 1989, doi: 10.1016/0006-2952(89)90548-0.

T. Efferth and E. Koch, ‘Complex interactions between phytochemicals. The multi-target therapeutic concept of phytotherapy’, Curr. Drug Targets, vol. 12, no. 1, pp. 122–132, Jan. 2011, doi: 10.2174/138945011793591626.

N. R. C. (US) P. on Neem, ‘BREAKTHROUGHS IN POPULATION CONTROL?’, in Neem: A Tree For Solving Global Problems, National Academies Press (US), 1992. Accessed: Dec. 25, 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK234639/

S. Gbotolorun, A. Osinubi, C. Noronha, and A. Okanlawon, ‘Antifertility potential of Neem flower extract on adult female Sprague-Dawley rats’, Afr. Health Sci., vol. 8, no. 3, pp. 168–173, Sep. 2008.

Published
2024-07-15
How to Cite
Anil Kumar. (2024). Therapeutic Potential Of Neem (Azadirachta Indica): A Review Of Its Bioactive Compounds And Anticancer Properties. Revista Electronica De Veterinaria, 25(1), 4082-4089. https://doi.org/10.69980/redvet.v25i1.2085
Section
Articles