Virtual Screening Of Furanoyacetylene Compounds For Pest Management Of Spodoptera Frugiperda J.E. Smith

  • Muthu Sheeba M
  • Sathyananth M
  • Pramely R
  • Leon Stephan Raj T
Keywords: Fall Armyworm, Furanoyacetylene Compounds, Molecular Docking, ADMET Analysis, Integrated Pest Management

Abstract

The fall armyworm, Spodoptera frugiperda, poses a significant threat to global agriculture, causing substantial yield losses and economic damage to major crops, such as maize, cotton, rice, and sorghum. Traditional pesticide management strategies are becoming increasingly ineffective because of pest resistance, necessitating the development of novel control agents. This study explored the potential of furanoyacetylene compounds as new insecticides using in silico molecular docking and absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis. The compounds were evaluated for their binding affinities to six target proteins critical for the development and metabolism of S. frugiperda. The results showed that wyerone exhibited the highest binding affinity and pan-active properties, indicating a broad-spectrum pesticidal potential. Panaxynol exhibited the best overall ADMET profile, suggesting favorable pharmacokinetic properties and safety. These findings highlight the potential of furanoyacetylene compounds as effective and environmentally sustainable biopesticides, warranting further experimental validation for integrated pest management strategies against Spodoptera frugiperda.

 

Author Biographies

Muthu Sheeba M

Assistant Professor, Department of Botany, Kamaraj College (Autonomous), Thoothukudi- 628 003.

Sathyananth M

Research Scholar (21111282261014), Department of Botany, St. Xavier’s College (Autonomous), Palayamkottai- 627 002.

Pramely R

Assistant Professor, Department of Botany, Kamaraj College (Autonomous), Thoothukudi- 628 003.

Leon Stephan Raj T

Assistant Professor and Director, Plant Molecular Biology Research Unit (PMRU), Department of Botany, St. Xavier’s College (Autonomous), Palayamkottai- 627 002. (Affiliated to Manonmaniam Sundaranar University, Abishekapatti- 627012, Tirunelveli, Tamil Nadu, India.)

References

1. Abd El-Lateef, H. M., Khalaf, M. M., Gouda, M., Abdelhamid, A. A., & Gad, M. A. (2024). Synthesis and Biological Evaluation of Benzamide Compounds as Insecticides Agents Against Spodoptera frugiperda (Lepidoptera: Noctuidae). Chemistry & Biodiversity, 21(8). https://doi.org/10.1002/cbdv.202400948
2. Aioub, A. A. A., El-Sappah, A. H., Huang, Q., Hashem, A. S., Abdel-Hady, A. A. A., Abdel-Wahab, S. I. Z., Al-Shuraym, L. A., El-Harairy, A., & Sayed, S. (2023). Identification and Characterization of Glutathione S-transferase Genes in Spodoptera frugiperda (Lepidoptera: Noctuidae) under Insecticides Stress. Toxics, 11(6), 542. https://doi.org/10.3390/toxics11060542
3. Ames, B. N., McCann, J., & Yamasaki, E. (1973). Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res, 11(3-4), 347-364. https://doi.org/10.1016/0027-5107(73)90014-6
4. Attele, A. S., Wu, J. A., & Yuan, C. S. (1999). Ginseng pharmacology: multiple constituents and multiple actions. Biochemical Pharmacology, 58(11), 1685-1693.
5. Bakry, M. M. S., & Abdel-Baky, N. F. (2024). Impact of the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) infestation on maize growth characteristics and yield loss. Brazilian Journal of Biology, 84. https://doi.org/10.1590/1519-6984.274602
6. Basketter, D. A., Kimber, I., Cronin, M. T., Schepky, A., Maurer, T., & Worth, A. (2004). Skin sensitization: prediction from structure. Chem Res Toxicol, 17(12), 1593-1604. https://doi.org/10.1021/ct049883+
7. Berenbaum, M. R. (1991). Comparative processing of plant toxins by insects. In Insect-Plant Interactions (pp. 45-77). CRC Press.
8. Berenbaum, M. R., &Zangerl, A. R. (2008). Facing the future of plant-insect interaction research: le retour à la "raison d'être". Plant Physiology, 146(3), 804-811.
9. Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., ... & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Res, 28(1), 235-242. https://doi.org/10.1093/nar/28.1.235
10. Bernart, M. W., Cardellina, J. H., Balaschak, M. S., Alexander, M. R., Shoemaker, R. H., & Boyd, M. R. (1996). Cytotoxic falcarinol oxylipins from Dendropanaxarboreus. Journal of Natural Products, 59(8), 748-753.
11. Brandt, K., Christensen, L. P., Hansen-Møller, J., Hansen, S. L., Haraldsdottir, J., Jespersen, L., ... & Toldam-Andersen, T. B. (2004). Health promoting compounds in vegetables and fruits: a systematic approach for identifying plant components with impact on human health. Trends in Food Science & Technology, 15(7-8), 384-393.
12. Brooks, B. R., Bruccoleri, R. E., Olafson, B. D., States, D. J., Swaminathan, S., & Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem, 4(2), 187-217. https://doi.org/10.1002/jcc.540040211
13. Cai, Y., Hu, M., Wang, X., Zhang, L., & Chen, H. (2024). Discovery of Novel Potential Insecticide-Resistance Mutations in Spodoptera frugiperda. Insects, 15(3), 186. https://doi.org/10.3390/insects15030186
14. Carvalho, R. A., Omoto, C., Field, L. M., Williamson, M. S., & Bass, C. (2013). Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda. PLoS One, 8(4), e62268.
15. Changkeb, V., Nobsathian, S., Coustau, C., Bullangpoti, V., & Le Goff, G. (2023). Insecticidal efficacy and potential of Combretum trifoliatum Vent. (Myrtales: Combretaceae) extracts in controlling Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae). Pest Management Science, 79(12), 4868–4878. https://doi.org/10.1002/ps.7688
16. Chen, H., Li, Y., Zhang, Z., Zhu, S., Yang, L., Huang, S., Liu, P., Zhou, J., & Xu, H. (2023). Enhanced Insecticidal Activity of Chlorfenapyr against Spodoptera frugiperda by Reshaping the Intestinal Microbial Community and Interfering with the Metabolism of Iron-Based Metal-Organic Frameworks. ACS Applied Materials & Interfaces, 15(30), 36036–36051. https://doi.org/10.1021/acsami.3c07598
17. Chen, H., Li, Y., Zhang, Z., Zhu, S., Yang, L., Huang, S., Liu, P., Zhou, J., & Xu, H. (2023). Enhanced Insecticidal Activity of Chlorfenapyr against Spodoptera frugiperda by Reshaping the Intestinal Microbial Community and Interfering with the Metabolism of Iron-Based Metal-Organic Frameworks. ACS Applied Materials & Interfaces, 15(30), 36036–36051. https://doi.org/10.1021/acsami.3c07598
18. Cheng, T., Wu, J., Wu, Y., Chilukuri, R. V., Huang, L., Yamamoto, K., ... & Wang, J. (2017). Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nature Ecology & Evolution, 1(11), 1747-1756.
19. Christensen, L. P., & Brandt, K. (2006). Bioactive polyacetylenes in food plants of the Apiaceae family: occurrence, bioactivity and analysis. Journal of Pharmaceutical and Biomedical Analysis, 41(3), 683-693.
20. Dambach, D. M., Hanzlik, R. P., Fafowora, O., &Kalgutkar, A. S. (2003). Drug-induced liver injury: mechanisms and prediction. Toxicol Pathol, 31(2), 243-250. https://doi.org/10.1080/01926230390194975
21. Desneux, N., Decourtye, A., &Delpuech, J. M. (2007). The sublethal effects of pesticides on beneficial arthropods. Annual Review of Entomology, 52, 81-106.
22. Després, L., David, J. P., & Gallet, C. (2007). The evolutionary ecology of insect resistance to plant chemicals. Trends in Ecology & Evolution, 22(6), 298-307.
23. Durand, K., An, H., & Nam, K. (2024). Invasive fall armyworms are corn strain. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-56301-0
24. Garrod, B., Lewis, B. G., & Coxon, D. T. (1978). Cis-heptadeca-1, 9-diene-4, 6-diyne-3, 8-diol, an antifungal polyacetylene from carrot root tissue. Physiological Plant Pathology, 13(2), 241-246.
25. Gonzalez-Cabrera, J., Mollá, O., Montón, H., & Urbaneja, A. (2011). Efficacy of Bacillus thuringiensis (Berliner) in controlling the tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). BioControl, 56(1), 71-80.
26. Gouin, A., Bretaudeau, A., Nam, K., Gimenez, S., Aury, J. M., Duvic, B., ... &d'Alençon, E. (2017). Two genomes of highly polyphagous lepidopteran pests (Spodoptera frugiperda, Noctuidae) with different host-plant ranges. Scientific Reports, 7(1), 11816.
27. Han, K.-R., Li, X., Yang, W.-Q., Liu, T.-X., Wang, W.-W., & Zhang, S.-Z. (2023). Characterization of CrufCSP1 and Its Potential Involvement in Host Location by Cotesia ruficrus (Hymenoptera: Braconidae), an Indigenous Parasitoid of Spodoptera frugiperda (Lepidoptera: Noctuidae) in China. Insects, 14(12), 920. https://doi.org/10.3390/insects14120920
28. Hansen, L., & Boll, P. M. (1986). Polyacetylenes in Araliaceae: biological activities of falcarinol-type compounds. Phytochemistry, 25(2), 285-293.
29. Hausen, B. M., Bröhan, J., König, W. A., Faasch, H., Hahn, H., & Brühn, G. (1987). Allergic and irritant contact dermatitis from falcarinol and didehydrofalcarinol in common ivy (Hedera helix L.). Contact Dermatitis, 17(1), 1-9.
30. Heckel, D. G. (2012). Learning the ABCs of Bt: ABC transporters and insect resistance to Bacillus thuringiensis provide clues to a crucial step in toxin mode of action. Pesticide Biochemistry and Physiology, 104(2), 103-110.
31. Hirakura, K., Morita, M., Nakajima, K., Ikeya, Y., & Mitsuhashi, H. (1991). Polyacetylenes from the roots of Panax ginseng. Phytochemistry, 30(11), 3327-3333.
32. IARC. (2020). IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Lyon, France: International Agency for Research on Cancer. https://monographs.iarc.fr/
33. Isman, M. B. (2006). Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Annual Review of Entomology, 51, 45-66.
34. Jiang, Y. Y., Liu, J., Xie, M. C., Li, Y. D., Yang, J. J., Zhang, M. L., & Qiu, K. (2014). Observation on law of diffusion damage of Spodoptera frugiperda in China in 2019. Plant Protection, 45(6), 10-19.
35. Kidmose, U., Hansen, S. L., Christensen, L. P., Edelenbos, M., Larsen, E., &Nørbaek, R. (2004). Effects of genotype, root size, storage, and processing on bioactive compounds in organically grown carrots (Daucus carota L.). Journal of Food Science, 69(9), S388-S394.
36. Kimura, Y., Sumiyoshi, M., Kawahira, K., &Sakanaka, M. (2004). Effects of ginseng saponins isolated from red ginseng roots on burn wound healing in mice. European Journal of Pharmacology, 495(2-3), 181-191.
37. Kobaisy, M., Abramowski, Z., Lermer, L., Saxena, G., Hancock, R. E., Towers, G. H., ... & Scott, I. M. (1997). Antimycobacterial polyynes of Devil's Club (Oplopanax horridus), a North American native medicinal plant. Journal of Natural Products, 60(11), 1210-1213.
38. Koul, O., & Walia, S. (2009). Comparing impacts of plant extracts and pure allelochemicals and implications for pest control. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4(049), 1-30.
39. Lai, Y., Li, Y., Liu, Z., et al. (2018). ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminform, 10(1), 24. https://doi.org/10.1186/s13321-018-0292-7
40. Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1996). PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst, 29(4), 183-191. https://doi.org/10.1107/s0108767296012253
41. Li, X., Schuler, M. A., & Berenbaum, M. R. (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 52, 231-253.
42. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev, 46(1-3), 3-26. https://doi.org/10.1016/s1389-0344(00)00173-3
43. Mahalle, R. M., Sun, W., Posos-Parra, O. A., Jung, S., Mota-Sanchez, D., Pittendrigh, B. R., & Seong, K. M. (2024). Identification of differentially expressed miRNAs associated with diamide detoxification pathways in Spodoptera frugiperda. Scientific Reports, 14(1). https://doi.org/10.1038/s41598-024-54771-w
44. Matsunaga, H., Katano, M., Yamamoto, H., Fujito, H., Mori, M., & Takata, K. (1990). Cytotoxic activity of polyacetylene compounds in Panax ginseng C. A. Meyer. Chemical and Pharmaceutical Bulletin, 38(12), 3480-3482.
45. Minto, R. E., & Blacklock, B. J. (2008). Biosynthesis and function of polyacetylenes and allied natural products. Progress in Lipid Research, 47(4), 233-306.
46. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem, 30(16), 2785-2791. https://doi.org/10.1002/jcc.21256
47. Nagaratna, W., Prakash, N. B., Deshmukh, S. S., Hossain, M. A., Sunil, C., Mallikarjuna, H. B., Kalleshwaraswamy, C. M., & Dhananjaya, B. C. (2023). Silicon Accumulation in Leaves Reduces the Herbivory by Invasive Fall Armyworm Spodoptera frugiperda and Enhances the Yield of Maize. International Journal of Plant Biology, 14(3), 701–713. https://doi.org/10.3390/ijpb14030052
48. Nam, K., Nègre, N., &Saldamando Benjumea, C. I. (2024). Two host-plant strains in the fall armyworm. Insect Science, 31(6), 1675–1683. https://doi.org/10.1111/1744-7917.13346
49. Ng, T. B. (2006). Pharmacological activity of sanchi ginseng (Panax notoginseng). Journal of Pharmacy and Pharmacology, 58(8), 1007-1019.
50. OECD. (2010). OECD Guidelines for the Testing of Chemicals. Paris, France: Organisation for Economic Co-operation and Development. https://www.oecd.org/chemicalsafety/testing/
51. Oliveira, J. A. C., Bertolucci, S. K. V., Carvalho, G. A., Lima, L. H. F., Corrêa, E. J. A., Figueiredo, K. G., Fernandes, L. A., & Alves, D. S. (2024). Effects of Essential Oils on Biological Characteristics and Potential Molecular Targets in Spodoptera frugiperda. Plants (Basel, Switzerland), 13(13), 1801. https://doi.org/10.3390/plants13131801
52. Pérez-Valera, O., Delgado, G., Nieto-Camacho, A., Valencia, I., Torres-Martínez, R., & Javier Espinosa-García, F. (2024). Larvicidal Activity against Spodoptera frugiperda of some Constituents from two Diospyros Species. In silico Pesticide-likeness Properties, Acetylcholinesterase Activity and Molecular Docking. Chemistry & Biodiversity, 21(2). https://doi.org/10.1002/cbdv.202301871
53. PerkinElmer. (2020). ChemDraw 20.0. PerkinElmer Informatics, Inc. https://www.perkinelmer.com/product/chemdraw
54. Peter, E., Tamiru, A., Sevgan, S., Dubois, T., Kelemu, S., Kruger, K., Torto, B., & Yusuf, A. (2023). Companion crops alter olfactory responses of the fall armyworm (Spodoptera frugiperda) and its larval endoparasitoid (Cotesia icipe). Chemical and Biological Technologies in Agriculture, 10(1). https://doi.org/10.1186/s40538-023-00415-6
55. Pfizer. (2002). Pfizer's Rule of Five. Pfizer Internal Report. (Unpublished)
56. Posos-Parra, O., Pittendrigh, B. R., Patterson, E., Difonzo, C. D., Wise, J. C., & Mota-Sanchez, D. (2024). Characterization of the inheritance of field-evolved resistance to diamides in the fall armyworm (Spodoptera frugiperda) (Lepidoptera: Noctuidae) population from Puerto Rico. PLOS ONE, 19(2), e0295928. https://doi.org/10.1371/journal.pone.0295928
57. Purup, S., Larsen, E., & Christensen, L. P. (2009). Differential effects of falcarinol and related aliphatic C 17-polyacetylenes on intestinal cell proliferation. Journal of Agricultural and Food Chemistry, 57(18), 8290-8296.
58. Regnault-Roger, C., Vincent, C., & Arnason, J. T. (2012). Essential oils in insect control: low-risk products in a high-stakes world. Annual Review of Entomology, 57, 405-424.
59. Samanta, S., Samanta, A., Thakur, H., Barman, M., Chakraborty, S., Roy, D., Banerjee, A., Tarafdar, J., & Upadhyaya, G. (2023). Evidence of population expansion and insecticide resistance mechanism in invasive fall armyworm (Spodoptera frugiperda). BMC Biotechnology, 23(1). https://doi.org/10.1186/s12896-023-00786-6
60. Sanguinetti, G. J., Jurkiewicz, N. L., Fermini, B., & Brown, A. M. (1999). hERG channel block: a common mechanism for drug-induced long QT syndrome. Cardiovasc Res, 44(2), 43-52. https://doi.org/10.1016/s0008-6363(99)00347-3
61. Schrödinger. (2020). PyMOL 2.4. Schrödinger, LLC. https://www.schrodinger.com/pymol
62. Scott, J. G. (2017). Cytochromes P450 and insecticide resistance. Insect Biochemistry and Molecular Biology, 89, 48-57.
63. Sparks, T. C., &Nauen, R. (2015). IRAC: mode of action classification and insecticide resistance management. Pesticide Biochemistry and Physiology, 121, 122-128.
64. Wang, C. Z., Aung, H. H., Ni, M., Wu, J. A., Tong, R., Wicks, S., ... & Yuan, C. S. (2007). Red American ginseng: ginsenoside constituents and anti-proliferative activities of heat-processed Panax quinquefolius roots. Planta Medica, 73(7), 669-674.
65. Young, J. F., Christensen, L. P., Theil, P. K., & Oksbjerg, N. (2007). The polyacetylenes falcarinol and falcarindiol affect stress and detoxification enzymes in the liver of pigs fed a high-fat diet. Food and Function, 2(7), 353-360.
66. Yu, S. J., Nguyen, S. N., & Abo-Elghar, G. E. (2003). Biochemical characteristics of insecticide resistance in the fall armyworm, Spodoptera frugiperda (J. E. Smith). Pesticide Biochemistry and Physiology, 77(1), 1-11.
67. Yu, S. J., Robinson, F. A., & Nation, J. L. (2016). Detoxification capacity in the honey bee, Apis mellifera L. Pesticide Biochemistry and Physiology, 32(1), 81-89.
68. Zhu, Y. C., & Liu, T. X. (2008). Effects of acephate and spinosad on carboxylesterases and glutathione S-transferases in Lygus lineolaris. Pesticide Biochemistry and Physiology, 91(3), 175-180.
69. Zhu, Y. C., Yao, J., Adamczyk, J., & Luttrell, R. (2016). Feeding toxicity and impact of imidacloprid formulation and mixtures with six representative pesticides at residue concentrations on honey bee physiology (Apis mellifera). PLoS One, 11(7), e0158635.
70. Zidorn, C., Jöhrer, K., Ganzera, M., Schubert, B., Sigmund, E. M., Mader, J., ... &Stuppner, H. (2005). Polyacetylenes from the Apiaceae vegetables carrot, celery, fennel, parsley, and parsnip and their cytotoxic activities. Journal of Agricultural and Food Chemistry, 53(7), 2518-252
How to Cite
Muthu Sheeba M, Sathyananth M, Pramely R, & Leon Stephan Raj T. (1). Virtual Screening Of Furanoyacetylene Compounds For Pest Management Of Spodoptera Frugiperda J.E. Smith. Revista Electronica De Veterinaria, 25(1), 3956-3966. https://doi.org/10.69980/redvet.v25i1.1959
Section
Articles