Integrating GIS and AHP for Optimal Landfill Site Selection: A Case Study of Alwar City, India

  • Mintu Saini
  • Dr. Salahuddin Mohd
Keywords: Municipal Solid Waste Management, Landfill Sites Suitability, Geographical Information System,, Multi-Criteria Decision Analysis, Analytical Hierarchy Process

Abstract

Municipal solid waste management (MSWM) has become a significant global and local concern. Landfill site selection is a critical component of MSWM. In various urban areas in India, including Alwar City, current dump sites were selected based on land availability rather than land suitability. This study employed Geographic Information Systems (GIS) and multi-criteria decision analysis (MCDA) using the Analytical Hierarchy Process (AHP) to classify cities into zones categorized as most suitable, suitable, moderately suitable, less suitable, and unsuitable for landfill sites. The findings revealed that 33,915 hectares, constituting 88.92% of the area, were classified as unsuitable, while 3,962 hectares (20.37 %) were considered suitable overall. Only 1,257 hectares, representing 3.2% of the total area, were the most suitable for landfill sites. A total of 121 potential sites were identified; however, only 10 met the minimum size criterion of 20 hectares and aligned with the Alwar City Master Plan 2051. The study also revealed that the existing landfill is located in an area that falls into a moderately suitable category. This study also contributes to the existing literature on choosing landfill sites that are both scientifically and socially acceptable in developing nations. This study combines MCDA, AHP, and GIS techniques to improve the environmental and socioeconomic sustainability of landfill site selection and management, thereby supporting the attainment of Sustainable Development Goals (SDGs) 3, 6, and 11.

Author Biographies

Mintu Saini

Research Scholar, Department of Geography, School of Earth Science, Banasthali Vidyapith, Rajasthan, India

Dr. Salahuddin Mohd

Assistant Professor, Department of Geography, School of Earth Science, Banasthali Vidyapith, Rajasthan, India

References

Aksoy, E., & San, B. T. (2019). Geographical information systems (GIS) and Multi-Criteria Decision Analysis (MCDA) integration for sustainable landfill site selection considering dynamic data source. Bulletin of Engineering Geology and the Environment, 78(2), 779–791. https://doi.org/10.1007/s10064-017-1135-z

Alanbari, M. A., Al-Ansari, N., & Jasim, H. K. (2014). GIS and Multicriteria Decision Analysis for Landfill Site Selection in Al-Hashimyah Qadaa. Natural Science, 06(05), 282–304. https://doi.org/10.4236/ns.2014.65032

Alkaradaghi, K., Ali, S. S., Al-Ansari, N., Laue, J., & Chabuk, A. (2019). Landfill Site Selection Using MCDM Methods and GIS in the Sulaimaniyah Governorate, Iraq. Sustainability, 11(17), 4530. https://doi.org/10.3390/su11174530

Annual Report. (2022). Ministry of Housing and Urban Affairs.

https://mohua.gov.in/upload/uploadfiles/files/2688HUA-ENGLISH-19-4-2023.pdf

AQUIFER MAPPING AND GROUND WATER MANAGEMENT Alwar District, Rajasthan. (2013). CENTRAL GROUND WATER BOARD MINISTRY OF WATER RESOURCES, RIVER DEVELOPMENT & GANGA REJUVANATION GOVERNMENT OF INDIA WESTERN REGION, JAIPUR.

Asfaw, D. M., Asnakew, Y. W., Sendkie, F. B., Workineh, E. B., Mekonnen, B. A., Abdulkadr, A. A., & Ali, A. K. (2024). Perceived social, economic, environmental and health effects of solid waste management practices in logia town, afar, ethiopia. Discover Sustainability, 5(1), 308. https://doi.org/10.1007/s43621-024-00533-7

Ashraf, M. A., Yusoff, I., Yusof, M., & Alias, Y. (2013). Study of contaminant transport at an open-tipping waste disposal site. Environmental Science and Pollution Research, 20(7), 4689–4710. https://doi.org/10.1007/s11356-012-1423-x

Azadeh, A., Saberi, M., Atashbar, N. Z., Chang, E., & Pazhoheshfar, P. (2013). Z-AHP: A Z-number extension of fuzzy analytical hierarchy process. 2013 7th IEEE International Conference on Digital Ecosystems and Technologies (DEST), 141–147. https://doi.org/10.1109/DEST.2013.6611344

Barton, D. N., Sundt, H., Bustos, A. A., Fjeldstad, H.-P., Hedger, R., Forseth, T., Köhler, B., Aas, Ø., Alfredsen, K., & Madsen, A. L. (2019). Multi-criteria decision analysis in Bayesian networks—Diagnosing ecosystem service trade-offs in a hydropower regulated river. Environmental Modelling & Software, 124, 104604. https://doi.org/10.1016/j.envsoft.2019.104604

Beede, D. N., & Bloom, D. E. (1995). THE ECONOMICS OF MUNICIPAL SOLID WASTE. The World Bank Research Observer, 10(2), 113–150. https://doi.org/10.1093/wbro/10.2.113

Bojórquez-Tapia, L. A., Sánchez-Colon, S., & Florez, A. (2005). Building Consensus in Environmental Impact Assessment Through Multicriteria Modeling and Sensitivity Analysis. Environmental Management, 36(3), 469–481. https://doi.org/10.1007/s00267-004-0127-5

Boroushaki, S., & Malczewski, J. (2010). Measuring consensus for collaborative decision-making: A GIS-based approach. Computers, Environment and Urban Systems, 34(4), 322–332.

https://doi.org/10.1016/j.compenvurbsys.2010.02.006

Chang, N.-B., Parvathinathan, G., & Breeden, J. B. (2008). Combining GIS with fuzzy multicriteria decision-making for landfill siting in a fast-growing urban region. Journal of Environmental Management, 87(1), 139–153. https://doi.org/10.1016/j.jenvman.2007.01.011

CPCB Annual Report. (2022). Central Pollution Control Board. https://cpcb.nic.in/annual-report.php

Csató, L. (2017). Characterization of an inconsistency ranking for pairwise comparison matrices. Annals of Operations Research, 261(1–2), 155–165. https://doi.org/10.1007/s10479-017-2627-8

Davies, A. L., Redpath, S. M., & Bryce, R. (2013). Use of Multicriteria Decision Analysis to Address Conservation Conflicts. Conservation Biology, 27(5), 936–944. https://doi.org/10.1111/cobi.12090

Demesouka, O., Vavatsikos, A., & Anagnostopoulos, K. (2014). GIS-based multicriteria municipal solid waste landfill suitability analysis: A review of the methodologies performed and criteria implemented. Waste Management & Research: The Journal for a Sustainable Circular Economy, 32(4), 270–296.

https://doi.org/10.1177/0734242X14526632

Directorate of Census Operations, Rajasthan. (2011). Census of India 2011—Rajasthan—Series 09—Part XII B - District Census Handbook, Alwar: Vol. Part XII B (2011th ed.). Office of the Registrar General & Census Commissioner, India (ORGI). https://censusindia.gov.in/nada/index.php/catalog/1059

Djokanović, S., Abolmasov, B., & Jevremović, D. (2016). GIS application for landfill site selection: A case study in Pančevo, Serbia. Bulletin of Engineering Geology and the Environment, 75(3), 1273–1299. https://doi.org/10.1007/s10064-016-0888-0

El Baba, M., Kayastha, P., & De Smedt, F. (2015). Landfill site selection using multi-criteria evaluation in the GIS interface: A case study from the Gaza Strip, Palestine. Arabian Journal of Geosciences, 8(9), 7499–7513. https://doi.org/10.1007/s12517-014-1736-9

Elkhrachy, I., Alhamami, A., & Alyami, S. H. (2023). Landfill Site Selection Using Multi-Criteria Decision Analysis, Remote Sensing Data, and Geographic Information System Tools in Najran City, Saudi Arabia. Remote Sensing, 15(15), 3754. https://doi.org/10.3390/rs15153754

Factsheet of industrial emissions in Alwar. (2023). Centre for Science and Environment. www.cseindia.org

Feizizadeh, B., & Ghorbanzadeh, O. (2017). GIS-based Interval Pairwise Comparison Matrices as a Novel Approach for Optimizing an Analytical Hierarchy Process and Multiple Criteria Weighting. GI_Forum, 1, 27–35. https://doi.org/10.1553/giscience2017_01_s27

Gallagher, L., Ferreira, S., & Convery, F. (2008). Host community attitudes towards solid waste landfill infrastructure: Comprehension before compensation. Journal of Environmental Planning and Management, 51(2), 233–257. https://doi.org/10.1080/09640560701864878

Gbanie, S. P., Tengbe, P. B., Momoh, J. S., Medo, J., & Kabba, V. T. S. (2013). Modelling landfill location using Geographic Information Systems (GIS) and Multi-Criteria Decision Analysis (MCDA): Case study Bo, Southern Sierra Leone. Applied Geography, 36, 3–12. https://doi.org/10.1016/j.apgeog.2012.06.013

Gorsevski, P. V., Donevska, K. R., Mitrovski, C. D., & Frizado, J. P. (2012). Integrating multi-criteria evaluation techniques with geographic information systems for landfill site selection: A case study using ordered weighted average. Waste Management, 32(2), 287–296. https://doi.org/10.1016/j.wasman.2011.09.023

Gupta, N., & Gupta, R. (2015). Solid waste management and sustainable cities in India: The case of Chandigarh. Environment and Urbanization, 27(2), 573–588. https://doi.org/10.1177/0956247815581747

Hashemkhani Zolfani, S., Yazdani, M., & Zavadskas, E. K. (2018). An extended stepwise weight assessment ratio analysis (SWARA) method for improving criteria prioritization process. Soft Computing, 22(22), 7399–7405. https://doi.org/10.1007/s00500-018-3092-2

Hazarika, R., & Saikia, A. (2020). Landfill site suitability analysis using AHP for solid waste management in the Guwahati Metropolitan Area, India. Arabian Journal of Geosciences, 13(21), 1148. https://doi.org/10.1007/s12517-020-06156-2

Jain, K., & Subbaiah, Y. V. S. (2007). Site Suitability Analysis for Urban Development Using GIS. Journal of Applied Sciences, 7(18), 2576–2583. https://doi.org/10.3923/jas.2007.2576.2583

Jamshidi, A., Kazemijahandizi, E., Allahgholi, L., Monavari, S. M., Tajziehchi, S., Hashemi, A., Moshtaghie, M., & Jamshidi, M. (2015). Landfill Site Selection: A Basis Toward Achieving Sustainable Waste Management. Polish Journal of Environmental Studies, 24, 1021–1029. https://doi.org/10.15244/pjoes/28641

Joshi, R., & Ahmed, S. (2016). Status and challenges of municipal solid waste management in India: A review. Cogent Environmental Science, 2(1), 1139434. https://doi.org/10.1080/23311843.2016.1139434

Kapilan, S., & Elangovan, K. (2018). Potential landfill site selection for solid waste disposal using GIS and multi-criteria decision analysis (MCDA). Journal of Central South University, 25(3), 570–585. https://doi.org/10.1007/s11771-018-3762-3

Karimi, A. R., Mehrdadi, N., Hashemian, S. J., Bidhendi, G. R. N., & Moghaddam, R. T. (2011). Selection of wastewater treatment process based on the analytical hierarchy process and fuzzy analytical hierarchy process methods. International Journal of Environmental Science & Technology, 8(2), 267–280.

https://doi.org/10.1007/BF03326215

Kharat, M. G., Kamble, S. J., Raut, R. D., Kamble, S. S., & Dhume, S. M. (2016). Modeling landfill site selection using an integrated fuzzy MCDM approach. Modeling Earth Systems and Environment, 2(2), 53. https://doi.org/10.1007/s40808-016-0106-x

Kontos, T. D., Komilis, D. P., & Halvadakis, C. P. (2005). Siting MSW landfills with a spatial multiple criteria analysis methodology. Waste Management, 25(8), 818–832. https://doi.org/10.1016/j.wasman.2005.04.002

Malczewski, J. (2000). On the Use of Weighted Linear Combination Method in GIS: Common and Best Practice Approaches. Transactions in GIS, 4(1), 5–22. https://doi.org/10.1111/1467-9671.00035

McIntyre, C., & Parfitt, M. K. (1998). Decision Support System for Residential Land Development Site Selection Process. Journal of Architectural Engineering, 4(4), 125–131. https://doi.org/10.1061/(ASCE)1076-0431(1998)4:4(125)

Mohd, W. R. W., & Abdullah, L. (2017). Pythagorean fuzzy analytic hierarchy process to multi-criteria decision making. 1905. https://doi.org/10.1063/1.5012208

Mushtaq, J., Dar, A. Q., & Ahsan, N. (2020). Spatial-temporal variations and forecasting analysis of municipal solid waste in the mountainous city of north-western Himalayas. SN Applied Sciences, 2(7). https://doi.org/10.1007/s42452-020-2975-x

Mvula, R. L. S., Mundike, J., & Nguvulu, A. (2023). Spatial suitability analysis for site selection of municipal solid waste landfill using hybrid GIS and MCDA approach: The case of Kitwe, Zambia. Scientific African, 21, e01885. https://doi.org/10.1016/j.sciaf.2023.e01885

Pal, M. S., & Bhatia, M. (2022). Current status, topographical constraints, and implementation strategy of municipal solid waste in India: A review. Arabian Journal of Geosciences, 15(12), 1176. https://doi.org/10.1007/s12517-022-10414-w

Pasalari, H., Nodehi, R. N., Mahvi, A. H., Yaghmaeian, K., & Charrahi, Z. (2019). Landfill site selection using a hybrid system of AHP-Fuzzy in GIS environment: A case study in Shiraz city, Iran. MethodsX, 6, 1454–1466. https://doi.org/10.1016/j.mex.2019.06.009

Rezaeisabzevar, Y., Bazargan, A., & Zohourian, B. (2020). Landfill site selection using multi criteria decision making: Influential factors for comparing locations. Journal of Environmental Sciences, 93, 170–184. https://doi.org/10.1016/j.jes.2020.02.030

Saaty, T. L. (1980). The analytic hierarchy process (AHP) (Vol. 41).

Saaty, T. L., & Vargas, L. G. (2012). Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. Springer. https://books.google.co.in/books?id=6J9XI8I1qjwC

Saini, M., Mohd., S., & Kalia, S. (2024). Analysing Land Use/Land Cover (LULC) changes and its dynamics using remote sensing and GIS: A Case study of Bansur Tehsil in Rajasthan. International Journal of Geography, Geology and Environment, 6(2, Part B), 97–105. https://www.geojournal.net/search?q=6-2-41

Srivastava, V., Ismail, S. A., Singh, P., & Singh, R. P. (2015). Urban solid waste management in the developing world with emphasis on India: Challenges and opportunities. Reviews in Environmental Science and Bio/Technology, 14(2), 317–337. https://doi.org/10.1007/s11157-014-9352-4

Suleman, H. A., & Baffoe, P. E. (2017). Selecting Suitable Sites for Mine Waste Dumps Using GIS Techniques at Goldfields, Damang Mine. Ghana Mining Journal, 17(1), 9–17. https://doi.org/10.4314/gm.v17i1.2

Sumathi, V. R., Natesan, U., & Sarkar, C. (2008). GIS-based approach for optimized siting of municipal solid waste landfill. Waste Management, 28(11), 2146–2160. https://doi.org/10.1016/j.wasman.2007.09.032

The Sustainable Development Goals Report. (2024). https://unstats.un.org/sdgs/report/2024/The-Sustainable-Development-Goals-Report-2024.pdf

Thungngern, J., Wijitkosum, S., Sriburi, T., & Sukhsri, C. (2015). A Review of the Analytical Hierarchy Process (AHP): An Approach to Water Resource Management in Thailand. Applied Environmental Research, 13–32. https://doi.org/10.35762/AER.2015.37.3.2

Vasanthi, P., Kaliappan, S., & Srinivasaraghavan, R. (2008). Impact of poor solid waste management on ground water. Environmental Monitoring and Assessment, 143(1–3), 227–238. https://doi.org/10.1007/s10661-007-9971-0

Vavatsikos, A. P., Demesouka, O. E., & Anagnostopoulos, K. P. (2020). GIS-based suitability analysis using fuzzy PROMETHEE. Journal of Environmental Planning and Management, 63(4), 604–628.

https://doi.org/10.1080/09640568.2019.1599830

Wilson, D. C., Velis, C. A., & Rodic, L. (2013). Integrated sustainable waste management in developing countries. Proceedings of the Institution of Civil Engineers - Waste and Resource Management, 166(2), 52–68. https://doi.org/10.1680/warm.12.00005

Yatoo, A. M., Hamid, B., Sheikh, T. A., Ali, S., Bhat, S. A., Ramola, S., Ali, Md. N., Baba, Z. A., & Kumar, S. (2024). Global perspective of municipal solid waste and landfill leachate: Generation, composition, eco-toxicity, and sustainable management strategies. Environmental Science and Pollution Research, 31(16), 23363–23392. https://doi.org/10.1007/s11356-024-32669-4

Yesilnacar, M. I., Süzen, M. L., Kaya, B. Ş., & Doyuran, V. (2012). Municipal solid waste landfill site selection for the city of Şanliurfa-Turkey: An example using MCDA integrated with GIS. International Journal of Digital Earth, 5(2), 147–164. https://doi.org/10.1080/17538947.2011.583993

Yildirim, V. (2012). Application of raster-based GIS techniques in the siting of landfills in Trabzon Province, Turkey: A case study. Waste Management & Research: The Journal for a Sustainable Circular Economy, 30(9), 949–960. https://doi.org/10.1177/0734242X12445656

Zambrano-Monserrate, M. A., Ruano, M. A., & Ormeño-Candelario, V. (2021). Determinants of municipal solid waste: A global analysis by countries’ income level. Environmental Science and Pollution Research, 28(44), 62421–62430. https://doi.org/10.1007/s11356-021-15167-9

Zhou, X., Ishizaka, A., Deng, Y., Chan, F. T. S., & Hu, Y. (2018). A DEMA℡-based completion method for incomplete pairwise comparison matrix in AHP. Annals of Operations Research, 271(2), 1045–1066.

https://doi.org/10.1007/s10479-018-2769-3

Published
2024-07-16
How to Cite
Mintu Saini, & Dr. Salahuddin Mohd. (2024). Integrating GIS and AHP for Optimal Landfill Site Selection: A Case Study of Alwar City, India. Revista Electronica De Veterinaria, 25(1), 3850-3863. https://doi.org/10.69980/redvet.v25i1.1857
Section
Articles