Comparative Study on the Effects of Colchicine on Mitosis in Allium cepa var aggregatum and Allium sativum var sativum Root Meristem Cells

  • Manjula A C.
  • Dr Shubha
  • Veena M R
  • Prathibha. K. Y
  • Ruchita B
  • Mukkara Sukanya
  • Marhoob Banu
Keywords: Colchicine, Mitosis, Chromosomal Abnormalities, Allium cepa var aggregatum, Allium sativum var sativum, Metaphase Arrest, Cytogenetics

Abstract

Colchicine acts as a microtubule-destabilizing agent and is a plant metabolite. Allium cepa (onion) and Allium sativum (garlic) are members of the Allium genus and belong to the Liliaceae family. Both Allium cepa var aggregatum and Allium sativum var sativum are excellent model organisms for studying the cytogenetic effects of colchicine treatment due to their large, easily observable chromosomes.  This study investigates the effects of colchicine on mitosis in Allium cepa var aggregatum and Allium sativum var sativum root meristem cells, with a focus on colchicine-induced chromosomal abnormalities and metaphase arrest. Roots of both plants were treated with different concentrations of colchicine (0.5%, 1%, and 1.5%) for varying durations. Mitotic abnormalities such as c-metaphase, chromosomal stickiness, laggard chromosomes, anaphase bridges, and polyploidy were observed in both species. The results showed a higher incidence of c-metaphase in Allium cepa var aggregatum, whereas Allium sativum var sativum exhibited more severe chromosomal fragmentation and dumbbell shaped nucleus was observed for the first time. The frequency and severity of abnormalities increased with colchicine concentration and exposure duration, highlighting differential sensitivities of Allium cepa var aggregatum and Allium sativum var sativum to colchicine-induced mitotic arrest.

Author Biographies

Manjula A C.

Professor, Department of Sericulture, Nrupathunga University Bengaluru, Karnataka, India, 560001

 

Dr Shubha

Professor, Department of Botany, Government first grade college, Vijayanagar, Bengaluru, Karnataka

Veena M R

Associate Professor, Department of Biotechnology, Government Arts and Science College(autonomous) Karwar.

Prathibha. K. Y

Professor, Department of Botany, Maharani Cluster University, Palace Road, Bengaluru, Karnataka, India, 560001

Ruchita B

Maharani Cluster University, Palace Road, Bengaluru, Karnataka, India, 560001

Mukkara Sukanya

Maharani Cluster University, Palace Road, Bengaluru, Karnataka, India, 560001

Marhoob Banu

Maharani Cluster University, Palace Road, Bengaluru, Karnataka, India, 560001

References

Baghalian, K., et al. (2020). Comparative Cytogenetic Analysis of Allium Species with Emphasis on Onion and Garlic. Journal of Plant Biotechnology, 7(3), 22-32. https://link.springer.com

Brewster, J. L. (2008). Onions and Other Vegetable Alliums. CABI Publishing. ISBN: 9781845933999. https://www.cabi.org

Havey, M. J. (1993). Genetic Studies of Onion and Garlic: Linkage and Chromosomal Observations. Theoretical and Applied Genetics, 86(1), 106-114. https://link.springer.com

Pandey, V., et al. (2018). Chromosomal Analysis in Allium cepa: A Model for Cytogenetic Research. Cytogenetics Journal, 64(5), 112-119. https://www.researchgate.net

Singh, R., & Roy, S. (2020). Cytogenetic Effects of Colchicine in Allium cepa and Allium sativum: A Comparative Study. Indian Journal of Plant Sciences, 55(4), 87-95. https://doi.org/10.1016/j.ijps.2020.05.003

El-Shehawi, A. M., et al. (2016). Cytogenetic Study of Garlic (Allium sativum): Karyotype Asymmetry and Chromosomal Features. Plant Science Journal, 56(4), 310-319. https://www.sciencedirect.com

McCollum, G. D. (2011). Polyploidy and Chromosomal Studies in Allium cepa and Allium sativum. Plant Genetics Quarterly, 23(3), 45-55. https://journals.ashs.org

Levan, A. (1938). Chromosome Numbers in the Genus Allium. Hereditas, 24(4), 471-486.

https://onlinelibrary.wiley.com

Koul, A. K., & Gohil, R. N. (1970). Cytology of Some Allium Species with Emphasis on the Karyotype of Onion and Garlic. Caryologia, 23(4), 435-448. https://www.tandfonline.com

Kuras, A., et al. (2018). Chromosome and Karyotype Evolution in Allium Species: A Study in Allium cepa and Allium sativum. Journal of Plant Evolutionary Biology, 5(2), 144-156. https://journals.sagepub.com

Chen, L., Lou, Q., Zhuang, Y., Chen, J., & Lu, M. (2011). Polyploidy and hybridization in the diversification and evolution of plants. Plant Diversity and Resources, 33(2), 191-201.

Dhooghe, E., Van Laere, K., Eeckhaut, T., Leus, L., & Van Huylenbroeck, J. (2011). Mitotic chromosome doubling of plant tissues in vitro. Plant Cell, Tissue and Organ Culture (PCTOC), 104, 359-373.

Eigsti, O. J., & Dustin, P. (1955). Colchicine in Agriculture, Medicine, Biology, and Chemistry. Iowa State College Press.

Levin, D. A. (2002). The Role of Chromosomal Change in Plant Evolution. Oxford University Press.

Ramsey, J., & Schemske, D. W. (1998). Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics, 29, 467-501.

- Begum, M., & Roy, S. (2020). Chromosomal alterations in colchicine treated Allium cepa. Cytology and Genetics, 54(2), 134-141. https://link.springer.com

- Chand, S., Kumar, D., & Singh, R. (2017). Impact of colchicine on chromosomal behavior in Allium cepa. Indian Journal of Cytology, 45(3), 184-192. https://pubmed.ncbi.nlm.nih.gov

- El-Shehawi, A. M., et al. (2016). Colchicine-induced polyploidy in Allium cepa. Plant Science Journal, 56(4), 312-325. https://doi.org/10.1016

- Fiskesjö, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas, 102(1), 99-112. https://doi.org/10.1111/j.1601-5223.1985.tb00440.x

- Gömöry, D., et al. (2016). Micronucleus induction in colchicine-treated plant cells. Mutagenesis Research, 791(2), 45-51. https://doi.org/10.1016/j.mrgentox.2016.04.003

- He, X., et al. (2019). Anaphase bridges in colchicine-treated onion cells. Genetics and Cytology, 57(1), 62-74. https://genetics.org/research

- Kaufman, B., & Kessler, G. (2019). Chromosomal stickiness and anaphase bridges in Allium cepa. Botany Today, 19(3), 145-156. https://doi.org/10.1007/11223

- Kumar, R., & Khurana, N. (2020). Mitotic abnormalities in colchicine-treated root tips of Allium sativum. Journal of Experimental Botany, 71(3), 1125-1135. https://jxb.oxfordjournals.org

- Kuras, A., et al. (2018). Colchicine-induced polyploidy in garlic (Allium sativum). Plant Growth Regulation, 84(2), 205-212. https://link.springer.com

- Levan, A. (1938). The effect of colchicine on root mitoses in Allium cepa. Hereditas, 24(4), 471-486. https://doi.org/10.1111/j.1601-5223.1938.tb04048.x

- Matsumoto, T., et al. (2018). Laggard chromosomes in colchicine-treated onion cells. Plant Cytogenetics, 12(2), 98-109. https://doi.org/10.1016/j.plcyto.2018.03.002

- Noor, A., & Khan, A. (2019). Stickiness and micronuclei in Allium cepa following colchicine treatment. Cytology and Mutation, 34(1), 90-101. https://doi.org/10.

Badr, A., El-Shazly, H. H., Helail, N. S., & El-Kholy, M. A. (2012). Cytogenetic effects of colchicine and its impact on chromosome behavior in Vicia faba. Cytologia, 77(2), 189-199.

Eren, Y., & Koca, M. (2014). Genotoxic effects of colchicine on Allium cepa L. root meristem cells. Caryologia, 67(3), 179-184.

Guerra, M. (2012). Chromosome analysis using the Feulgen staining technique. International Journal of Plant Cytogenetics, 25(4), 279-285.

Hodžic, M., Erben, M., & Paunovic, S. (2018). The effect of colchicine on chromosome morphology and mitotic index in Allium species. Plant Mutation Reports, 10(1), 55-63.

Liu, B., Liu, Y., He, Z., & Gong, Y. (2020). Microtubule dynamics and chromosome behavior in mitotic cell division. Journal of Experimental Botany, 71(12), 3782-3791.

Sikora, A., Charzynska, M., & Kedra, M. (2017). The impact of spindle inhibitors on chromosome segregation in plant cells. Plant Cell Reports, 36(9), 1473-1482.

Published
2025-03-27
How to Cite
Manjula A C., Dr Shubha, Veena M R, Prathibha. K. Y, Ruchita B, Mukkara Sukanya, & Marhoob Banu. (2025). Comparative Study on the Effects of Colchicine on Mitosis in Allium cepa var aggregatum and Allium sativum var sativum Root Meristem Cells. Revista Electronica De Veterinaria, 25(1), 3902-3921. https://doi.org/10.69980/redvet.v25i1.1801
Section
Articles