Critical Elements to Scrutinize While Selecting Mesoporous Silica Nanoparticle: A Review

  • Prabhjot Singh
  • Minakshi
  • Dr. Sandeep Kumar
Keywords: Mesoporous Silica Nanoparticles discovery, Factors, Sol-Gel Process, Uptake of MSN, Evaluation, Biosafety profile.

Abstract

To select a novel drug delivery system over conventional dosage forms have become the commonest approach these days, as the former leads to overcome the drawbacks of the latter in an efficient manner. Likewise, Mesoporous Silica Nanoparticles are one of the novel approaches on nanoparticle system which have got an eye by the researchers to formulate it into drug delivery. The pore size ranging from 2-50 nm with larger surface area is what makes it as an effective drug carrier system. The three main chemicals constitute the base for Mesoporous Silica Nanoparticles preparation including Silica Precursor, Structure Directing Surfactant and Catalyst particularly by Sol-Gel process which is typically a two-step procedure hydrolysis and condensation. The reason why MSNs brought into drug delivery system is because all types of drug release like immediate release, sustained release as well as targeted release systems can be designed through this approach. There are several key factors with which the delivery rate of Mesoporous Silica Nanoparticles can be regulated like controlling the pore size, regulation of particle size, pore volume and making the Mesoporous Silica Nanoparticles in ordered structure. In addition, the drug loading is achieved effectively by controlling these parameters and it can load both hydrophilic and hydrophobic drugs. The review on this topic sets tone for considerations to follow before the selection of mesoporous silica nanoparticle because more knowledge is required to fulfil this carrier as drug delivery system. This review seeks about using Silica derived mesoporous nanoparticles as a perfect system for the enhancement in solubility along with release of drug at a rate which can be controlled.

Author Biographies

Prabhjot Singh

Department of Pharmaceutics

 Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, BELA

(An Autonomous College)

Minakshi

Department of Pharmaceutics

 Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, BELA

(An Autonomous College)

Dr. Sandeep Kumar

Department of Pharmaceutics

 Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial College of Pharmacy, BELA

(An Autonomous College)

References

Krukemeyer MG, Krenn, Huebner F, Wagner W, Resch R. History and Possible Uses of Nanomedicine Based on Nanoparticles and Nanotechnological Progress. J Nanomedicine Nanotechnol. 2015;6:1–7.

Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm J. 2011 Jul;19(3):129–41.

Kankala RK, Zhang YS, Wang S, Lee C, Chen A. Supercritical Fluid Technology: An Emphasis on Drug Delivery and Related Biomedical Applications. Adv Healthc Mater. 2017 Aug;6(16):1700433.

Kankala RK, Zhu K, Sun XN, Liu CG, Wang SB, Chen AZ. Cardiac Tissue Engineering on the Nanoscale. ACS Biomater Sci Eng. 2018 Mar 12;4(3):800–18.

Gong T, Xie J, Liao J, Zhang T, Lin S, Lin Y. Nanomaterials and bone regeneration. Bone Res. 2015 Nov 10;3(1):15029.

Huo Q sheng, Margolese DI, Stucky GD. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials. Chem Mater. 1996;8:1147–60.

Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc. 1992 Dec 1;114(27):10834–43.

Trewyn BG, Slowing II, Giri S, Chen HT, Lin VSY. Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release. Acc Chem Res. 2007 Sep 1;40(9):846–53.

Øye G, Sjöblom J, Stöcker M. Synthesis, characterization and potential applications of new materials in the mesoporous range. Adv Colloid Interface Sci. 2001 Jan;89–90:439–66.

Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures. J Am Chem Soc. 1998 Jun 1;120(24):6024–36.

Lin YS, Haynes CL. Impacts of Mesoporous Silica Nanoparticle Size, Pore Ordering, and Pore Integrity on Hemolytic Activity. J Am Chem Soc. 2010 Apr 7;132(13):4834–42.

Williams S, Neumann A, Bremer I, Su Y, Dräger G, Kasper C, et al. Nanoporous silica nanoparticles as biomaterials: evaluation of different strategies for the functionalization with polysialic acid by step-by-step cytocompatibility testing. J Mater Sci Mater Med. 2015 Mar;26(3):125.

Qiao ZA, Zhang L, Guo M, Liu Y, Huo Q. Synthesis of Mesoporous Silica Nanoparticles via Controlled Hydrolysis and Condensation of Silicon Alkoxide. Chem Mater. 2009 Aug 25;21(16):3823–9.

Möller K, Kobler J, Bein T. Colloidal Suspensions of Nanometer‐Sized Mesoporous Silica. Adv Funct Mater. 2007 Mar 5;17(4):605–12.

Feng P, Bu X, Pine DJ. Control of Pore Sizes in Mesoporous Silica Templated by Liquid Crystals in Block Copolymer−Cosurfactant−Water Systems. Langmuir. 2000 Jun 1;16(12):5304–10.

Prouzet E, Cot F, Nabias G, Larbot A, Kooyman P, Pinnavaia TJ. Assembly of Mesoporous Silica Molecular Sieves Based on Nonionic Ethoxylated Sorbitan Esters as Structure Directors. Chem Mater. 1999 Jun 1;11(6):1498–503.

Formation of highly ordered mesoporous silica materials adopting lyotropic liquid crystal mesophases. J Mater Chem. 2002 Dec 10;12(1):117–23.

Sayari A, Yang Y. Nonionic oligomeric polymer directed synthesis of highly ordered large pore periodic mesoporous organosilica. Chem Commun. 2002;2582–3.

Blin JL, Michaux F, Stébé MJ. Nanostuctured mesoporous materials from different silica sources using fluorinated surfactants as templates. Colloids Surf Physicochem Eng Asp. 2016 Dec;510:104–12.

Brevet D, Jouannin C, Tourné-Péteilh C, Devoisselle JM, Vioux A, Viau L. Self-encapsulation of a drug-containing ionic liquid into mesoporous silica monoliths or nanoparticles by a sol–gel process. RSC Adv. 2016;6:82916–23.

Abd Shukor SR, Zainal NA, Wab H, Razak K. Study on the Effect of Synthesis Parameters of Silica Nanoparticles Entrapped with Rifampicin. Chem Eng Trans. 2013 Jul;32:2245–50.

Wang Y. Synthesis and formation of hierarchical mesoporous silica network in acidic aqueous solutions of sodium silicate and cationic surfactant. Colloid J. 2010 Dec;72(6):737–42.

Das D, Yang Y, O’Brien JS, Breznan D, Nimesh S, Bernatchez S, et al. Synthesis and Physicochemical Characterization of Mesoporous SiO2 Nanoparticles. Correa-Duarte MA, editor. J Nanomater. 2014 Jan;2014(1):176015.

Yi J, Kruk M. Pluronic-P123-Templated Synthesis of Silica with Cubic Ia 3 d Structure in the Presence of Micelle Swelling Agent. Langmuir. 2015 Jul 14;31(27):7623–32.

Yamamoto E, Mori S, Shimojima A, Wada H, Kuroda K. Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method. Nanoscale. 2017;9(7):2464–70.

Stöber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci. 1968 Jan;26(1):62–9.

Zhu Y, Shi J, Shen W, Dong X, Feng J, Ruan M, et al. Stimuli‐Responsive Controlled Drug Release from a Hollow Mesoporous Silica Sphere/Polyelectrolyte Multilayer Core–Shell Structure. Angew Chem Int Ed. 2005 Aug 12;44(32):5083–7.

Cao S, Chang J, Fang L, Wu L. Metal Nanoparticles Confined in the Nanospace of Double-shelled Hollow Silica Spheres for Highly Efficient and Selective Catalysis. Chem Mater. 2016;28:5596–600.

Jang KS, Kim HJ, Johnson JR, Kim W gwi, Koros WJ, Jones CW, et al. Modified Mesoporous Silica Gas Separation Membranes on Polymeric Hollow Fibers. Chem Mater. 2011 Jun 28;23(12):3025–8.

Zhang Y, Wang J, Bai X, Jiang T, Zhang Q, Wang S. Mesoporous Silica Nanoparticles for Increasing the Oral Bioavailability and Permeation of Poorly Water Soluble Drugs. Mol Pharm. 2012 Mar 5;9(3):505–13.

Bossaert WD, De Vos DE, Van Rhijn WM, Bullen J, Grobet PJ, Jacobs PA. Mesoporous Sulfonic Acids as Selective Heterogeneous Catalysts for the Synthesis of Monoglycerides. J Catal. 1999 Feb;182(1):156–64.

Ash I. Handbook of green chemicals. 1998;

Bernardos A, Kouřimská L. Applications of mesoporous silica materials in food - a review. Czech J Food Sci. 2013 Apr 30;31(2):99–107.

Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-Based Medicines: A Review of FDA-Approved Materials and Clinical Trials to Date. Pharm Res. 2016 Oct;33(10):2373–87.

Qu F, Zhu G, Lin H, Zhang W, Sun J, Li S, et al. A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials. J Solid State Chem. 2006 Jul;179(7):2027–35.

Carriazo D, Del Arco M, Fernández A, Martín C, Rives V. Inclusion and Release of Fenbufen in Mesoporous Silica. J Pharm Sci. 2010 Aug;99(8):3372–80.

Vivero-Escoto JL. Surface functionalized mesoporous silica nanoparticles for intracellular drug delivery. 2009.

Thomas S, Harshita BSP, Mishra P, Talegaonkar S. Ceramic Nanoparticles: Fabrication Methods and Applications in Drug Delivery. Curr Pharm Des. 2015 Dec 7;21(42):6165–88.

Tang F, Li L, Chen D. Mesoporous Silica Nanoparticles: Synthesis, Biocompatibility and Drug Delivery. Adv Mater. 2012 Mar 22;24(12):1504–34.

Limo MJ, Sola-Rabada A, Boix E, Thota V, Westcott ZC, Puddu V, et al. Interactions between Metal Oxides and Biomolecules: from Fundamental Understanding to Applications. Chem Rev. 2018 Nov 28;118(22):11118–93.

Swami A, Shi J, Gadde S, Votruba AR, Kolishetti N, Farokhzad OC. Nanoparticles for Targeted and Temporally Controlled Drug Delivery. In: Svenson S, Prud’homme RK, editors. Multifunctional Nanoparticles for Drug Delivery Applications [Internet]. Boston, MA: Springer US; 2012 [cited 2025 Feb 20]. p. 9–29. (Nanostructure Science and Technology). Available from: https://link.springer.com/10.1007/978-1-4614-2305-8_2

Shahbazi MA, Faghfouri L, Ferreira MPA, Figueiredo P, Maleki H, Sefat F, et al. The versatile biomedical applications of bismuth-based nanoparticles and composites: therapeutic, diagnostic, biosensing, and regenerative properties. Chem Soc Rev. 2020;49(4):1253–321.

Martínez-Carmona M, Colilla M, Vallet-Regí M. Smart Mesoporous Nanomaterials for Antitumor Therapy. Nanomaterials. 2015 Nov 6;5(4):1906–37.

Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992 Oct;359(6397):710–2.

Li C, Wang J, Wang Y, Gao H, Wei G, Huang Y, et al. Recent progress in drug delivery. Acta Pharm Sin B. 2019 Nov;9(6):1145–62.

Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine. 2012 Nov;5577.

Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Controlled Release. 2010 Aug;145(3):182–95.

Attard GS, Glyde JC, Göltner CG. Liquid-crystalline phases as templates for the synthesis of mesoporous silica. Nature. 1995 Nov 23;378(6555):366–8.

Hollamby MJ, Borisova D, Brown P, Eastoe J, Grillo I, Shchukin D. Growth of Mesoporous Silica Nanoparticles Monitored by Time-Resolved Small-Angle Neutron Scattering. Langmuir. 2012 Mar 6;28(9):4425–33.

Edler KJ. Current Understanding of Formation Mechanisms in Surfactant‐Templated Materials. ChemInform. 2005 Dec 20;36(51):chin.200551224.

Seljak KB, Kocbek P, Gašperlin M. Mesoporous silica nanoparticles as delivery carriers: An overview of drug loading techniques. J Drug Deliv Sci Technol. 2020 Oct;59:101906.

Ambrogi V, Perioli L, Marmottini F, Giovagnoli S, Esposito M, Rossi C. Improvement of dissolution rate of piroxicam by inclusion into MCM-41 mesoporous silicate. Eur J Pharm Sci. 2007 Nov;32(3):216–22.

Ambrogi V, Perioli L, Marmottini F, Accorsi O, Pagano C, Ricci M, et al. Role of mesoporous silicates on carbamazepine dissolution rate enhancement. Microporous Mesoporous Mater. 2008 Aug;113:445–52.

¸ahika S, Unaydin G, Yilmaz A. Improvement of solubility of celecoxib by inclusion in MCM-41 mesoporous silica: drug loading and release. Turk J Chem. 2015 Jan;39:1–17.

Charnay C, Bégu S, Tourné-Péteilh C, Nicole L, Lerner DA, Devoisselle JM. Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property. Eur J Pharm Biopharm. 2004 May;57(3):533–40.

Van Speybroeck M, Mellaerts R, Mols R, Thi TD, Martens JA, Van Humbeeck J, et al. Enhanced absorption of the poorly soluble drug fenofibrate by tuning its release rate from ordered mesoporous silica. Eur J Pharm Sci. 2010 Dec;41(5):623–30.

Kumar D, Sailaja Chirravuri SV, Shastri NR. Impact of surface area of silica particles on dissolution rate and oral bioavailability of poorly water soluble drugs: A case study with aceclofenac. Int J Pharm. 2014 Jan;461(1–2):459–68.

Ambrogi V, Perioli L, Pagano C, Latterini L, Marmottini F, Ricci M, et al. MCM-41 for furosemide dissolution improvement. Microporous Mesoporous Mater. 2012 Jan;147(1):343–9.

Vadia N, Rajput S. Study on formulation variables of methotrexate loaded mesoporous MCM-41 nanoparticles for dissolution enhancement. Eur J Pharm Sci. 2012 Jan;45(1–2):8–18.

Anunziata OA, Beltramone AR, Martínez ML, Belon LL. Synthesis and characterization of SBA-3, SBA-15, and SBA-1 nanostructured catalytic materials. J Colloid Interface Sci. 2007 Nov;315(1):184–90.

Martín A, García RA, Karaman DS, Rosenholm JM. Polyethyleneimine-functionalized large pore ordered silica materials for poorly water-soluble drug delivery. J Mater Sci. 2014 Feb;49(3):1437–47.

Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science. 1998 Jan 23;279(5350):548–52.

Guo Z, Liu XM, Ma L, Li J, Zhang H, Gao YP, et al. Effects of particle morphology, pore size and surface coating of mesoporous silica on Naproxen dissolution rate enhancement. Colloids Surf B Biointerfaces. 2013 Jan;101:228–35.

Tingming F, Liwei G, Kang L, Tianyao W, Jin L. Template occluded SBA-15: An effective dissolution enhancer for poorly water-soluble drug. Appl Surf Sci. 2010 Sep;256(23):6963–8.

Ambrogi V, Marmottini F, Pagano C. Amorphous carbamazepine stabilization by the mesoporous silicate SBA-15. Microporous Mesoporous Mater. 2013 Sep;177:1–7.

Vialpando M, Aerts A, Persoons J, Martens J, Van Den Mooter G. Evaluation of ordered mesoporous silica as a carrier for poorly soluble drugs: Influence of pressure on the structure and drug release. J Pharm Sci. 2011 Aug;100(8):3411–20.

Voort PVD, Benjelloun M, Vansant EF. Rationalization of the Synthesis of SBA-16: Controlling the Micro- and Mesoporosity. J Phys Chem B. 2002;106:9027–32.

De Andrade GF, Soares DCF, Almeida RKDS, Sousa EMB. Mesoporous Silica SBA‐16 Functionalized with Alkoxysilane Groups: Preparation, Characterization, and Release Profile Study. Phuruangrat A, editor. J Nanomater. 2012 Jan;2012(1):816496.

Hu Y, Zhi Z, Zhao Q, Wu C, Zhao P, Jiang H, et al. 3D cubic mesoporous silica microsphere as a carrier for poorly soluble drug carvedilol. Microporous Mesoporous Mater. 2012 Jan;147(1):94–101.

Hu Y, Wang J, Zhi Z, Jiang T, Wang S. Facile synthesis of 3D cubic mesoporous silica microspheres with a controllable pore size and their application for improved delivery of a water-insoluble drug. J Colloid Interface Sci. 2011 Nov;363(1):410–7.

Jammaer J, Aerts A, D’Haen J, Seo JW, Martens JA. Convenient synthesis of ordered mesoporous silica at room temperature and quasi-neutral pH. J Mater Chem. 2009;19(44):8290.

Meoto S, Kent N, Nigra MM, Coppens MO. Effect of stirring rate on the morphology of FDU-12 mesoporous silica particles. Microporous Mesoporous Mater. 2017 Sep;249:61–6.

Liu X, Che S. Enhanced release of the poorly soluble drug itraconazole loaded in ordered mesoporous silica. Sci China Chem. 2015 Mar;58(3):400–10.

Guillet-Nicolas R, Ahmad R, Cychosz KA, Kleitz F, Thommes M. Insights into the pore structure of KIT-6 and SBA-15 ordered mesoporous silica – recent advances by combining physical adsorption with mercury porosimetry. New J Chem. 2016;40(5):4351–60.

Moulari B, Pertuit D, Pellequer Y, Lamprecht A. The targeting of surface modified silica nanoparticles to inflamed tissue in experimental colitis. Biomaterials. 2008 Dec;29(34):4554–60.

Cheng SH, Lee CH, Chen MC, Souris JS, Tseng FG, Yang CS, et al. Tri-functionalization of mesoporous silica nanoparticles for comprehensive cancer theranostics—the trio of imaging, targeting and therapy. J Mater Chem. 2010;20(29):6149.

Oliveira AF, De Sousa EMB. Synthesis and characterization of MSN/Fe3O4/Gd2O3 nanocomposite as theranostic systems. J Nanoparticle Res. 2023 Jun;25(6):115.

Beltrán-Osuna ÁA, Gómez Ribelles JL, Perilla JE. A study of some fundamental physicochemical variables on the morphology of mesoporous silica nanoparticles MCM-41 type. J Nanoparticle Res. 2017 Dec;19(12):381.

Le TT, Elzhry Elyafi AK, Mohammed AR, Al-Khattawi A. Delivery of Poorly Soluble Drugs via Mesoporous Silica: Impact of Drug Overloading on Release and Thermal Profiles. Pharmaceutics. 2019 Jun 10;11(6):269.

Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodríguez-Reinoso F, Rouquerol J, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem. 2015;87:1051–69.

Niculescu V. Mesoporous Silica Nanoparticles for Bio-Applications. Front Mater. 2020 Feb;7.

Xu C, Amna N, Shi Y, Sun R, Weng C, Chen J, et al. Drug-Loaded Mesoporous Silica Nanoparticles Enhance Antitumor Immunotherapy by Regulating MDSCs. Molecules. 2024 May;29:2436.

Chen Y, Meng Q, Wu M, Wang S, Xu P, Chen H, et al. Hollow Mesoporous Organosilica Nanoparticles: A Generic Intelligent Framework-Hybridization Approach for Biomedicine. J Am Chem Soc. 2014 Nov 19;136(46):16326–34.

Asefa T, Tao Z. Biocompatibility of Mesoporous Silica Nanoparticles. Chem Res Toxicol. 2012 Nov 19;25(11):2265–84.

Lu J, Liong M, Li Z, Zink JI, Tamanoi F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small. 2010;6 16:1794–805.

Fadeel B, Garcia-Bennett AE. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Adv Drug Deliv Rev. 2010 Mar;62(3):362–74.

Napierska D, Thomassen LC, Lison D, Martens JA, Hoet PH. The nanosilica hazard: another variable entity. Part Fibre Toxicol. 2010 Dec;7(1):39.

Di Pasqua AJ, Sharma KK, Shi YL, Toms BB, Ouellette W, Dabrowiak JC, et al. Cytotoxicity of mesoporous silica nanomaterials. J Inorg Biochem. 2008 Jul;102(7):1416–23.

Kohane DS, Langer R. Biocompatibility and drug delivery systems. Chem Sci. 2010;1(4):441–6.

He Q, Zhang Z, Gao Y, Shi J, Li Y. Intracellular Localization and Cytotoxicity of Spherical Mesoporous Silica Nano‐ and Microparticles. Small. 2009 Dec 4;5(23):2722–9.

Verma A, Stellacci F. Effect of Surface Properties on Nanoparticle–Cell Interactions. Small. 2010 Jan 4;6(1):12–21.

Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat Mater. 2009 Jul;8(7):543–57.

Tao Z, Toms BB, Goodisman J, Asefa T. Mesoporosity and Functional Group Dependent Endocytosis and Cytotoxicity of Silica Nanomaterials. Chem Res Toxicol. 2009 Nov 16;22(11):1869–80.

He Q, Zhang J, Shi J, Zhu Z, Zhang L, Bu W, et al. The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials. 2010 Feb;31(6):1085–92.

Moghimi SM, Hamad I. Liposome-Mediated Triggering of Complement Cascade. J Liposome Res. 2008 Jan;18(3):195–209.

Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Controlled Release. 2006 May;112(1):15–25.

Song H, Ahmad Nor Y, Yu M, Yang Y, Zhang J, Zhang H, et al. Silica Nanopollens Enhance Adhesion for Long-Term Bacterial Inhibition. J Am Chem Soc. 2016 May 25;138(20):6455–62.

Fleischer CC, Payne CK. Nanoparticle–Cell Interactions: Molecular Structure of the Protein Corona and Cellular Outcomes. Acc Chem Res. 2014 Aug 19;47(8):2651–9.

Yang S, Liu Y, Wang Y, Cao A. Biosafety and Bioapplication of Nanomaterials by Designing Protein–Nanoparticle Interactions. Small. 2013 May 27;9(9–10):1635–53.

Lesniak A, Salvati A, Santos-Martinez MJ, Radomski MW, Dawson KA, Åberg C. Nanoparticle Adhesion to the Cell Membrane and Its Effect on Nanoparticle Uptake Efficiency. J Am Chem Soc. 2013 Jan 30;135(4):1438–44.

Walkey CD, Chan WCW. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev. 2012;41(7):2780–99.

Tenzer S, Docter D, Kuharev J, Musyanovych A, Fetz V, Hecht R, et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat Nanotechnol. 2013 Oct;8(10):772–81.

Lee S, Yun HS, Kim SH. The comparative effects of mesoporous silica nanoparticles and colloidal silica on inflammation and apoptosis. Biomaterials. 2011 Dec;32(35):9434–43.

Chen L, Xiao S, Zhu H, Wang L, Liang H. Shape-dependent internalization kinetics of nanoparticles by membranes. Soft Matter. 2016;12(9):2632–41.

Trewyn BG, Nieweg JA, Zhao Y, Lin VSY. Biocompatible mesoporous silica nanoparticles with different morphologies for animal cell membrane penetration. Chem Eng J. 2008 Mar 15;137(1):23–9.

Joglekar M, Roggers RA, Zhao Y, Trewyn BG. Interaction effects of mesoporous silica nanoparticles with different morphologies on human red blood cells. RSC Adv. 2013;3(7):2454.

Vallet-Regí M, Colilla M, Izquierdo-Barba I, Manzano M. Mesoporous Silica Nanoparticles for Drug Delivery: Current Insights. Molecules. 2017 Dec 25;23(1):47.

Published
2024-12-18
How to Cite
Prabhjot Singh, Minakshi, & Dr. Sandeep Kumar. (2024). Critical Elements to Scrutinize While Selecting Mesoporous Silica Nanoparticle: A Review. Revista Electronica De Veterinaria, 25(1), 3842-3851. https://doi.org/10.69980/redvet.v25i1.1770
Section
Articles