Preparation Of Cadmium Dopped Nanocrystalline Indium Oxide By Combustion Method And Its Gas Sensing Behaviour

  • Pawan M. Chatare
  • Vivek D. Kapse
  • D. R. Patil
Keywords: Cadmium-doped indium oxide, Combustion synthesis, Nanocrystalline materials, Gas sensing, Semiconductor sensors

Abstract

This work examines the combustion synthesis of cadmium (Cd) doped nanocrystalline indium oxide (In2O3) and its gas-sensing potential. This flexible n-type semiconductor, indium oxide, has great potential for gas-sensing applications due to its high sensitivity and quick reaction to diverse gases. Strategic doping improves its performance. Cadmium doping was used to enhance gas-sensing capabilities in In2O3 by altering its structural, optical, and electrical characteristics. Combustion synthesis produces nanocrystalline materials with excellent purity and controllable shape quickly, cheaply, and scalable. Crystalline structure, shape, elemental content, and optical characteristics of produced Cd-doped In2O3 nanomaterials were confirmed using XRD, SEM, EDX. The material's sensitivity, selectivity, and response-recovery to hydrogen, ammonia, and volatile organic molecules were tested in gas sensing tests. The study found that Cd doping improved gas-sensing capability in In2O3, including increased sensitivity, quicker reaction times, and reduced response times.

 

Author Biographies

Pawan M. Chatare

Mahatma Gandhi College of Science, Gadchandur, Tah- Korpana, Dist- Chandrapur

Vivek D. Kapse

Arts, Science and Commerce College, Chikhaladara, Dist- Amravati

D. R. Patil

Bulk and Nanomaterials Research Laboratory, Department of Physics, R. L. College, Parola, Dist- Jalgaon

References

1. Yu, C.-W., Fu, H.-W., Yang, S.-M., Lin, Y.-S., & Lu, K.-C. (2023). Controlled Synthesis and Enhanced Gas Sensing Performance of Zinc-Doped Indium Oxide Nanowires. Nanomaterials, 13(7), 1170. https://doi.org/10.3390/nano13071170
2. Sen, P., Bhattacharya, P., Mukherjee, G., Ganguly, J., Marik, B., Thapliyal, D., Verma, S., Verros, G. D., Chauhan, M. S., & Arya, R. K. (2023). Advancements in Doping Strategies for Enhanced Photocatalysts and Adsorbents in Environmental Remediation. Technologies, 11(5), 144. https://doi.org/10.3390/technologies11050144
3. Kumarage, G. W. C., Hakkoum, H., & Comini, E. (2023). Recent Advancements in TiO2 Nanostructures: Sustainable Synthesis and Gas Sensing. Nanomaterials, 13(8), 1424. https://doi.org/10.3390/nano13081424
4. Chiang, J.-L., Yadlapalli, B. K., Chen, M.-I., & Wuu, D.-S. (2022). A Review on Gallium Oxide Materials from Solution Processes. Nanomaterials, 12(20), 3601. https://doi.org/10.3390/nano12203601
5. Kurmashov, P. B., Ukhina, A. V., Manakhov, A., Ishchenko, A. V., Maksimovskii, E. A., & Bannov, A. G. (2023). Solution Combustion Synthesis of Ni/Al2O3 Catalyst for Methane Decomposition: Effect of Fuel. Applied Sciences, 13(6), 3962. https://doi.org/10.3390/app13063962
6. Ghasempour, A., Dehghan, H., Ataee, M., Chen, B., Zhao, Z., Sedighi, M., Guo, X., & Shahbazi, M.-A. (2023). Cadmium Sulfide Nanoparticles: Preparation, Characterization, and Biomedical Applications. Molecules, 28(9), 3857. https://doi.org/10.3390/molecules28093857
7. Ranjan, Rajeev & Mohan, Chandra & Choubey, s.K. & Tiwary, Kamala. (2023). Study of structural, morphological and optical properties of Mn+2 doped CdS nanoparticles synthesized at various doping concentration. Chalcogenide Letters. 20. 709-724. 10.15251/CL.2023.2010.709.
8. Ali, A., Chiang, Y. W., & Santos, R. M. (2022). X-ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals, 12(2), 205. https://doi.org/10.3390/min12020205
9. Saravanakumar Karunamoorthy, Jagan Govindan, Lee Jongh, Park Chang Min. (2023). MOF-derived C, N-In2O3 with GdFeO3 Z-scheme heterostructure for the photocatalytic removal of tetracycline, 2059-7037, https://doi.org/10.1038/s41545-023-00288-0.
10. S.K. Jasmin Vijitha, K. Mohanraj, R.P. Jebin, Structural, optical, and surface modifications by varying precursor concentrations on spray deposition of In doped Co3O4 thin films for electro chemical application, Chemical Physics Impact, Volume 6, 2023, 100143, ISSN 2667-0224, https://doi.org/10.1016/j.chphi.2022.100143.
11. Omar Muktaridha, Muhammad Adlim, Suhendrayatna Suhendrayatna, Ismail Ismail, Progress of 3d metal-doped zinc oxide nanoparticles and the photocatalytic properties, Arabian Journal of Chemistry, Volume 14, Issue 6, 2021, 103175, ISSN 1878-5352, https://doi.org/10.1016/j.arabjc.2021.103175.
12. Hamrouni, A., Moussa, M., Fessi, N., Palmisano, L., Ceccato, R., Rayes, A., & Parrino, F. (2023). Solar Photocatalytic Activity of Ba-Doped ZnO Nanoparticles: The Role of SurfaceHydrophilicity. Nanomaterials, 13(20),2742. https://doi.org/10.3390/nano13202742
13. Bertolotti, Federica, Nedelcu, Georgian, Vivani, Anna, Cervellino, Antonio, Masciocchi, Norberto, Guagliardi, Antonietta, Kovalenko, Maksym V. (2019), American Chemical Society ,Volume 13, Issue 12, ISSN 1936-0851, https://doi.org/10.1021/acsnano.9b07626
14. Norton, K. J., Alam, F., & Lewis, D. J. (2021). A Review of the Synthesis, Properties, and Applications of Bulk and Two-Dimensional Tin (II) Sulfide (SnS). Applied Sciences, 11(5), 2062. https://doi.org/10.3390/app11052062
15. Karmaoui, Mohamed,Jorge, Ana Belen,McMillan, Paul F.,Aliev, Abil E.,Pullar, Robert C.,Labrincha, João António,Tobaldi, David Maria, (2018),American Chemical Society,volume 3, Issue 10,https://doi.org/10.1021/acsomega.8b02122
Published
2024-06-22
How to Cite
Pawan M. Chatare, Vivek D. Kapse, & D. R. Patil. (2024). Preparation Of Cadmium Dopped Nanocrystalline Indium Oxide By Combustion Method And Its Gas Sensing Behaviour. Revista Electronica De Veterinaria, 25(1), 3664-3675. https://doi.org/10.69980/redvet.v25i1.1683
Section
Articles