Exploring the Potential of TiO2 Nanoparticles: Optical and Magnetic Properties
Keywords:
XRD, ESR, SEM, Isopropoxide
Abstract
Nanoparticles have revolutionized various fields due to their widespread applications in daily life. Among these, semiconducting transition metal oxide Titanium dioxide (TiO2) stands out for its exceptional ultraviolet absorption properties, including antibacterial and photocatalytic activities. TiO2 is an ideal material for preparing organic-inorganic composite materials, existing in both crystalline and amorphous forms. In this study, Titanium dioxide (TiO2) powder was synthesized using the Sol-gel technique, with titanium (4) isopropoxide (TTIP) as the precursor. X-ray diffraction (XRD) analysis confirmed the phase and revealed peaks consistent with the standard spectrum (JCPDS no.: 21-1272 and 21-1276). Scanning electron microscopy (SEM) revealed particle sizes in the nanometer range, with SEM images showing uneven arrangements of nanoparticles with sizes between 55.6 and 68.8 nm. The optical spectra demonstrated enhanced strong and prominent absorption due to the nano size, with a maximum absorption band around 210 nm. Fourier transform infrared spectroscopy (FTIR) recorded at room temperature (4000-400 cm-1) confirmed the presence of functional groups. Electron spin resonance (ESR) spectroscopy revealed the magnetic properties of the sample, with the magnetic resonance field influenced by exchange interaction, resulting in a Dyson line shape and g factor (g = 2).References
1. Li, W., Shah, S. I., Huang, C. P., Jung, O., & Ni, C. (2002). Metallorganic chemical vapor deposition and characterization of TiO2 nanoparticles. Materials Science and Engineering: B, 96(3), 247-253.
2. Remillard, J. T., McBride, J. R., Nietering, K. E., Drews, A. R., & Zhang, X. (2000). Real-time in situ spectroscopic ellipsometry studies of the photocatalytic oxidation of stearic acid on titania films. The Journal of Physical Chemistry B, 104(18), 4440-4447.
3. Traversa, E. (1995). Design of ceramic materials for chemical sensors with novel properties. Journal of the American Ceramic Society, 78(10), 2625-2632.
4. O'Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737-740.
5. Kay, A., & Grätzel, M. (1996). Low-cost photovoltaic modules based on dye-sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells, 44(1), 99-117.
6. Mahshid, S., Askari, M., & Ghamsari, M. S. (2007). Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Journal of Materials Processing Technology, 189(1-3), 296-300.
7. Plesch, G., Gorbar, M., Vogt, U. F., Jesenak, K., & Vargova, M. (2009). Reticulated macroporous ceramic foam supported TiO2 for photocatalytic applications. Materials Letters, 63(3-4), 461-463.
8. Formenti, M., Juillet, F., Meriiaudeau, P., Teichner, S. J., & Vergnon, P. J. (1972). Colloid Interface Science, 39, 79.
9. Shi, L. Y., Li, C. Z., & Fang, D. Y. (1998). Materials Review (China), 12, 23.
10. Shi, L., Li, C., Chen, A., Zhu, Y., & Fang, D. (2000). Materials Chemistry and Physics, 66, 51.
11. Mazdiyasni, K. S. (1982). Ceramics International, 8, 42.
12. Yan, M., Rhodes, W., & Sprintger, L. (1982). American Ceramic Society Bulletin, 61, 911.
13. Devi, R. S., Venckatesh, R., & Sivaraj, R. (2014). International Journal of Innovative Research in Science, Engineering and Technology, 3(8), 15206-15211.
14. Zhuravlev, V. A. (1999). Physics of the Solid State, 41, 956-959.
2. Remillard, J. T., McBride, J. R., Nietering, K. E., Drews, A. R., & Zhang, X. (2000). Real-time in situ spectroscopic ellipsometry studies of the photocatalytic oxidation of stearic acid on titania films. The Journal of Physical Chemistry B, 104(18), 4440-4447.
3. Traversa, E. (1995). Design of ceramic materials for chemical sensors with novel properties. Journal of the American Ceramic Society, 78(10), 2625-2632.
4. O'Regan, B., & Grätzel, M. (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), 737-740.
5. Kay, A., & Grätzel, M. (1996). Low-cost photovoltaic modules based on dye-sensitized nanocrystalline titanium dioxide and carbon powder. Solar Energy Materials and Solar Cells, 44(1), 99-117.
6. Mahshid, S., Askari, M., & Ghamsari, M. S. (2007). Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution. Journal of Materials Processing Technology, 189(1-3), 296-300.
7. Plesch, G., Gorbar, M., Vogt, U. F., Jesenak, K., & Vargova, M. (2009). Reticulated macroporous ceramic foam supported TiO2 for photocatalytic applications. Materials Letters, 63(3-4), 461-463.
8. Formenti, M., Juillet, F., Meriiaudeau, P., Teichner, S. J., & Vergnon, P. J. (1972). Colloid Interface Science, 39, 79.
9. Shi, L. Y., Li, C. Z., & Fang, D. Y. (1998). Materials Review (China), 12, 23.
10. Shi, L., Li, C., Chen, A., Zhu, Y., & Fang, D. (2000). Materials Chemistry and Physics, 66, 51.
11. Mazdiyasni, K. S. (1982). Ceramics International, 8, 42.
12. Yan, M., Rhodes, W., & Sprintger, L. (1982). American Ceramic Society Bulletin, 61, 911.
13. Devi, R. S., Venckatesh, R., & Sivaraj, R. (2014). International Journal of Innovative Research in Science, Engineering and Technology, 3(8), 15206-15211.
14. Zhuravlev, V. A. (1999). Physics of the Solid State, 41, 956-959.
Published
2024-03-27
How to Cite
S. Rajyalakshmi, K. Sujatha, & T.V. Rambabu. (2024). Exploring the Potential of TiO2 Nanoparticles: Optical and Magnetic Properties. Revista Electronica De Veterinaria, 25(1), 3629 - 3634. https://doi.org/10.69980/redvet.v25i1.1667
Issue
Section
Articles