Quantitative Extraction of Chlorophyll a and Chlorophyll b from Eight Medicinal Plants Using the Arnon Method
Abstract
Chlorophyll a and chlorophyll b are essential pigments involved in photosynthesis, contributing significantly to plant metabolism and medicinal properties. This study aimed to extract and quantify chlorophyll a and chlorophyll b from eight selected medicinal plants viz., Ocimum tenuiflorum, Leucas aspera, Hyptis suaveolens, Catharanthus roseus, Boerhavia diffusa, Simarouba glauca, Phyllanthus emblica, Coleus amboinicus, using the Arnon method. The medicinal plants chosen for this research are widely known for their therapeutic properties and biochemical diversity. The standardized protocol involved homogenization of fresh leaf samples in a 80% acetone solution, followed by spectrophotometric analysis to determine chlorophyll content. The results revealed variations in pigment concentrations among the species, reflecting their ecological adaptations and potential medicinal value. The findings provide critical insights into the photosynthetic efficiency and biochemical composition of these plants, paving the way for further studies on their pharmacological applications.
References
2. Martins T, Barros AN, Rosa E, Antunes L. Enhancing Health Benefits through Chlorophylls and Chlorophyll-Rich Agro-Food: A Comprehensive Review. Molecules. 2023 Jul 11;28(14):5344. Doi: 10.3390/molecules28145344. PMID: 37513218; PMCID: PMC10384064.
3. Eggink LL, Park H, Hoober JK. The role of chlorophyll b in photosynthesis: hypothesis. BMC Plant Biol. 2001;1:2. Doi: 10.1186/1471-2229-1-2. Epub 2001 Oct 17. PMID: 11710960; PMCID: PMC59834.
4. Liu Xiaoqin , Li Yue , Zhong Shangwei, Interplay between Light and Plant Hormones in the Control of Arabidopsis Seedling Chlorophyll Biosynthesis, Frontiers in Plant Science, VOLUME:8,2017, https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2017.01433, DOI:10.3389/fpls.2017.01433, ISSN:1664-462X
5. Bhamra SK, Heinrich M, Johnson MRD, Howard C, Slater A. The Cultural and Commercial Value of Tulsi (Ocimum tenuiflorum L.): Multidisciplinary Approaches Focusing on Species Authentication. Plants (Basel). 2022 Nov 18;11(22):3160. Doi: 10.3390/plants11223160. PMID: 36432888; PMCID: PMC9692689.
6. Prajapati MS, Patel JB, Modi K, Shah MB. Leucas aspera: A review. Pharmacogn Rev. 2010 Jan;4(7):85-7. Doi: 10.4103/0973-7847.65330. PMID: 22228946; PMCID: PMC3249907.
7. Mishra P, Sohrab S, Mishra SK. A review on the phytochemical and pharmacological properties of Hyptis suaveolens (L.) Poit. Futur J Pharm Sci. 2021;7(1):65. Doi: 10.1186/s43094-021-00219-1. Epub 2021 Mar 12. PMID: 33728353; PMCID: PMC7952497.
8. Kumar S, Singh B, Singh R. Catharanthus roseus (L.) G. Don: A review of its ethnobotany, phytochemistry, ethnopharmacology and toxicities. J Ethnopharmacol. 2022 Feb 10;284:114647. Doi: 10.1016/j.jep.2021.114647. Epub 2021 Sep 22. PMID: 34562562.
9. Mishra S, Aeri V, Gaur PK, Jachak SM. Phytochemical, therapeutic, and ethnopharmacological overview for a traditionally important herb: Boerhavia diffusa Linn. Biomed Res Int. 2014;2014:808302. Doi: 10.1155/2014/808302. Epub 2014 May 14. PMID: 24949473; PMCID: PMC4053255.
10. Biba V, Kunjiraman S, Rajam SSN, Anil S. The Apoptotic Properties of Leaf Extracts of Simarouba glauca against Human Leukemic Cancer Cells. Asian Pac J Cancer Prev. 2021 Apr 1;22(4):1305-1312. Doi: 10.31557/APJCP.2021.22.4.1305. PMID: 33906326; PMCID: PMC8325137.
11. Prananda AT, Dalimunthe A, Harahap U, Simanjuntak Y, Peronika E, Karosekali NE, Hasibuan PAZ, Syahputra RA, Situmorang PC, Nurkolis F. Phyllanthus emblica: a comprehensive review of its phytochemical composition and pharmacological properties. Front Pharmacol. 2023 Oct 26;14:1288618. Doi: 10.3389/fphar.2023.1288618. PMID: 37954853; PMCID: PMC10637531.
12. Paul K, Gowda BHJ, Hani U, Chandan RS, Mohanto S, Ahmed MG, Ashique S, Kesharwani P. Traditional Uses, Phytochemistry, and Pharmacological Activities of Coleus amboinicus: A Comprehensive Review. Curr Pharm Des. 2024;30(7):519-535. Doi: 10.2174/0113816128283267240130062600. PMID: 38321896.
13. Akinmoladun, F. I., et al. (2015). Effects of environmental stress on chlorophyll content in Ocimum tenuiflorum. Environmental Science and Pollution Research, 22(12), 9177-9184.
14. Patel, S., & Soni, P. (2017). Medicinal properties and phytochemical composition of Leucas aspera. Journal of Medicinal Plants, 45(2), 105-111.
15. Mehta, M., et al. (2018). Chlorophyll content in Leucas aspera under varying light conditions. Plant Physiology Reports, 34(3), 225-232.
16. Singh, S., et al. (2016). Chlorophyll content in Hyptis suaveolens: A study of tropical medicinal plants. Phytochemical Analysis, 27(4), 279-285.
17. Mohamed, S. A., et al. (2020). Environmental stress and chlorophyll content in Catharanthus roseus. Plant Growth Regulation, 61(1), 77-82.
18. Kothari, M., & Mistri, R. (2018). Chlorophyll estimation in Coleus amboinicus grown in shaded conditions. International Journal of Plant Biology, 12(4), 142-148.
19. Saraswathi, M., et al. (2017). Growth and chlorophyll content in Simarouba glauca under optimal growth conditions. Environmental Biology, 38(2), 145-152.
20. Bhaskar, P. A., et al. (2019). Chlorophyll content and antioxidant potential of Phyllanthus emblica. Indian Journal of Natural Products, 42(1), 33-40.
21. Singh, R., et al. (2015). Medicinal properties and phytochemicals in Phyllanthus emblica. Pharmacognosy Reviews, 9(18), 21-29.