Review on the Platinum Metal Based Anticancer Agent: Cis-Platin

  • Md. Selim
Keywords: Cisplatin, DNA damage, platinum-based agents, carboplatin, oxaliplatin, apoptosis

Abstract

Cisplatin, a platinum-based compound, is one of the most widely used anticancer agents in clinical oncology. Its discovery marked a significant milestone in cancer therapy due to its ability to effectively target various types of malignancies, including testicular, ovarian, bladder, and lung cancers. This review explores the molecular mechanisms underlying cisplatin's antitumor activity, which primarily involves the formation of DNA-platinum adducts that disrupt DNA replication and transcription, triggering apoptosis in cancer cells. However, the therapeutic utility of cisplatin is often hampered by severe side effects, such as nephrotoxicity, ototoxicity, and peripheral neuropathy, as well as the development of drug resistance. The review also discusses advances in overcoming these challenges, including structural modifications of cisplatin, development of next-generation platinum-based drugs, and combination therapies. Furthermore, insights into targeted delivery systems, such as nanoparticles and liposomes, are highlighted for improving drug selectivity and minimizing toxicity. By addressing current limitations and evaluating innovative strategies, this review underscores the ongoing potential of platinum-based agents in cancer therapy and their role in shaping future oncological treatments.

Author Biography

Md. Selim
Assistant Professor, Department of Chemistry, Vivekananda College,269, D.H. Road, Kolkata, India,700063  

 

References

1. S. Dasari, P. B. Tchounwou. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014, 740, 364. doi:10.1016/j.ejphar.2014.07.025.
2. R. P. Miller, R. K. Tadagavadi, G. Ramesh, W. B. Reeves. Mechanisms of Cisplatin Nephrotoxicity, Toxins. 2010, 2, 2490. doi: 10.3390/toxins2112490.
3. C. Zhang, C. Xu, X. Gao, Q. Yao. Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics,2022, 12, 2115. doi: 10.7150/thno.69424.
4. A. Brown, S. Kumar, P. B. Tchounwou. Cisplatin-Based Chemotherapy of Human Cancers, J Cancer Sci Ther. 2019, 11,97. PMID: 32148661; PMCID: PMC7059781.
5. G. Oh , H. Kim , A. Shen , S. B. Lee , D. Khadka , A. Pandit , H. So. Cisplatin-induced Kidney Dysfunction andPerspectives on Improving Treatment Strategies, Electrolyte Blood Press, 2014, 12, 55, http://dx.doi.org/10.5049/EBP.2014.12.2.55.
6. B. Rosenberg, L. V. Camp. The successful regression of large solid sarcoma 180 tumors by platinum compounds. Cancer Res. 1970, 30, 1799. PMID: 5457941.
7. S. Ghosh. Cisplatin: The first metal based anticancer drug. Bioorg Chem. 2019, 88,102925. doi: 10.1016/j.bioorg.2019.102925.
8. J. J. Wilson, S. J. Lippard, Synthetic Methods for the Preparation of Platinum Anticancer Complexes, Chem Rev. 2014, 114, 4470. doi:10.1021/cr4004314.
9. A.M. Florea, D.Büsselberg. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects. Cancers. 2011, 3, 1351, doi:10.3390/cancers3011351.
10. E. A. Elmorsy , S. Saber , R. S. Hamad , M.A. A.Reheim , A. F. Elkott , M. A. AlShehri , K. Morsy , S. A. Salama , M. E. Youssef . Advances in understanding cisplatin-induced toxicity: Molecular mechanisms and protective strategies, European Journal of Pharmaceutical Sciences.2024, 203, 106939 doi.org/10.1016/j.ejps.2024.106939.
11. G. Chu. Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair. Journal of Biological Chemistry.1994, 269,787. DOI:10.1016/S0021-9258(17)42175-2.
12. A. Basu, S. Krishnamurthy. Cellular responses to Cisplatin‐induced DNA damage. Journal of nucleic acids. 2010, 2010, 201367. DOI: 10.4061/2010/201367.
13. V. M. Gonzalez , M .A. Fuertes, C. Alonso, J. M. Perez. Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol.2001,59,657. doi: 10.1124/mol.59.4.657.
14. D. E. Clay, D. T. Fox. DNA Damage Responses during the Cell Cycle: Insights from Model Organisms and Beyond. Genes 2021, 12, 1882. https://doi.org/10.3390/genes12121882.
15. N. L. May,. J. M. Egly, F. Coin. "True lies: the double life of the nucleotide excision repair factors in transcription and DNA repair." Journal of Nucleic Acids. 2010, 2010, 616342. doi:10.4061/2010/616342.
16. Y. Zhang, H. L. Rohde, H. Wu. Involvement of nucleotide excision and mismatch repair mechanisms in double strand break repair. Current Genomics. 2009, 10, 250. doi: 10.2174/138920209788488544
17. R. Li , W. Zhao, C. Jin , H. Xiong. Dual–target platinum(IV) complexes reverse cisplatin resistance in triple negative breast via inhibiting poly(ADP–ribose) polymerase (PARP– 1) and enhancing DNA damage. Bioorganic Chemistry, 2023, 133,106354. doi.org/10.1016/j.bioorg.2023.106354
18. R.R. Iyer, A. Pluciennik, DNA mismatch repair: functions and mechanisms. Journal of Huntington’s Disease. 2021, 10, 75.DOI 10.3233/JHD-200438
19. W. Katarzyna, J. Błasiak. Recognition and repair of DNA-cisplatin adducts. Acta Biochim Pol. 2002, 49,583. PMID: 12422229.
20. M. Duan, J. Ulibarri, K. J. Liu, P. Mao, Role of nucleotide excision repair in cisplatin resistance. International Journal of Molecular Sciences, 2020, 21, 9248. doi: 10.3390/ijms21239248.
Published
2024-05-18
How to Cite
Md. Selim. (2024). Review on the Platinum Metal Based Anticancer Agent: Cis-Platin. Revista Electronica De Veterinaria, 25(1), 3469 - 3473. https://doi.org/10.69980/redvet.v25i1.1597
Section
Articles