Application of CNN in blood smeared images: A Review

  • Dilip Kumar Baruah
  • Kuntala Boruah
Keywords: .

Abstract

Disorders such as malaria, leukemia, thrombocytopenia, sickle cell anemia, and many others cause morphological and physiological changes in the blood cells which can be used as an indicator in the diagnosis process of such diseases. Blood smear analysis is a routine work carried out in laboratories to diagnose a disease. Microscopic evaluation is one of the widely used techniques for blood smear analysis. However, the diagnostic result may vary depending on the skill and experience of the technician, instruments and methods used to analyze the blood sample. Manual microscopic examination is time consuming and is less repeatability. The advent of digital imaging taken using Light microscopy has enhanced diagnostic role. In recent years several technological innovations in the field of image processing and Convolutional Neural Networks (CNN) are employed in automated medical diagnosis. This paper focuses on the recent works reported in the field of automated disease diagnosis from blood-smeared images.

Author Biographies

Dilip Kumar Baruah

Research Scholar, Sibsagar University

Kuntala Boruah

Assistant Professor, Sibsagar University

References

[1] W. Burger and M. J. Burge, ‘Digital Images’, in Digital Image Processing, London: Springer London, 2016, pp. 1–21. doi: 10.1007/978-1-4471-6684-9_1.
[2] M. Poostchi, K. Silamut, R. J. Maude, S. Jaeger, and G. Thoma, ‘Image analysis and machine learning for detecting malaria’, Translational Research, vol. 194, pp. 36–55, Apr. 2018, doi: 10.1016/j.trsl.2017.12.004.
[3] P. Mildenberger, M. Eichelberg, and E. Martin, ‘Introduction to the DICOM standard’, Eur Radiol, vol. 12, no. 4, pp. 920–927, Apr. 2002, doi: 10.1007/s003300101100.
[4] J. Frean, ‘Microscopic images transmitted by mobile cameraphone’, Transactions of the Royal Society of Tropical Medicine and Hygiene, vol. 101, no. 10, p. 1053, Oct. 2007, doi: 10.1016/j.trstmh.2007.06.008.
[5] D. K. Das, M. Ghosh, M. Pal, A. K. Maiti, and C. Chakraborty, ‘Machine learning approach for automated screening of malaria parasite using light microscopic images’, Micron, vol. 45, pp. 97–106, Feb. 2013, doi: 10.1016/j.micron.2012.11.002.
[6] N. Sinha and A. G. Ramakrishnan, ‘Automation of differential blood count’, in TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region, Bangalore, India, 2003, pp. 547–551. doi: 10.1109/TENCON.2003.1273221.
[7] D. N. Breslauer, R. N. Maamari, N. A. Switz, W. A. Lam, and D. A. Fletcher, ‘Mobile Phone Based Clinical Microscopy for Global Health Applications’, PLoS ONE, vol. 4, no. 7, p. e6320, Jul. 2009, doi: 10.1371/journal.pone.0006320.
[8] N. E. Ross, C. J. Pritchard, D. M. Rubin, and A. G. Dusé, ‘Automated image processing method for the diagnosis and classification of malaria on thin blood smears’, Med Bio Eng Comput, vol. 44, no. 5, Art. no. 5, May 2006, doi: 10.1007/s11517-006-0044-2.
[9] L. Rosado, J. M. C. da Costa, D. Elias, and J. S. Cardoso, ‘Automated Detection of Malaria Parasites on Thick Blood Smears via Mobile Devices’, Procedia Computer Science, vol. 90, pp. 138–144, 2016, doi: 10.1016/j.procs.2016.07.024.
[10] S. Kaewkamnerd, C. Uthaipibull, A. Intarapanich, M. Pannarut, S. Chaotheing, and S. Tongsima, ‘An automatic device for detection and classification of malaria parasite species in thick blood film’, BMC Bioinformatics, vol. 13, no. S17, p. S18, Dec. 2012, doi: 10.1186/1471-2105-13-S17-S18.
[11] J. E. Arco, J. M. Górriz, J. Ramírez, I. Álvarez, and C. G. Puntonet, ‘Digital image analysis for automatic enumeration of malaria parasites using morphological operations’, Expert Systems with Applications, vol. 42, no. 6, Art. no. 6, Apr. 2015, doi: 10.1016/j.eswa.2014.11.037.
[12] S. S. Al-amri, N. V. Kalyankar, and K. S.D, ‘Image Segmentation by Using Thershod Techniques’, JOURNAL OF COMPUTING, vol. 2, no. 5, pp. 83–86, May 2010.
[13] Jianping Fan, D. K. Y. Yau, A. K. Elmagarmid, and W. G. Aref, ‘Automatic image segmentation by integrating color-edge extraction and seeded region growing’, IEEE Trans. on Image Process., vol. 10, no. 10, pp. 1454–1466, Oct. 2001, doi: 10.1109/83.951532.
[14] Chunming Li, Chiu-Yen Kao, J. C. Gore, and Zhaohua Ding, ‘Minimization of Region-Scalable Fitting Energy for Image Segmentation’, IEEE Trans. on Image Process., vol. 17, no. 10, Art. no. 10, Oct. 2008, doi: 10.1109/TIP.2008.2002304.
[15] S. F. Toha and U. K. Ngah, ‘Computer Aided Medical Diagnosis for the Identification of Malaria Parasites’, in 2007 International Conference on Signal Processing, Communications and Networking, Chennai, India, Feb. 2007, pp. 521–522. doi: 10.1109/ICSCN.2007.350655.
[16] X. Zheng, Q. Lei, R. Yao, Y. Gong, and Q. Yin, ‘Image segmentation based on adaptive K-means algorithm’, J Image Video Proc., vol. 2018, no. 1, Art. no. 1, Dec. 2018, doi: 10.1186/s13640-018-0309-3.
[17] M. A. Ali, L. S. Dooley, and G. C. Karmakar, ‘Object Based Image Segmentation Using Fuzzy Clustering’, in 2006 IEEE International Conference on Acoustics Speed and Signal Processing Proceedings, Toulouse, France, 2006, vol. 2, p. II-105-II–108. doi: 10.1109/ICASSP.2006.1660290.
[18] C. Di Ruberto, A. Dempster, S. Khan, and B. Jarra, ‘Morphological Image Processing for Evaluating Malaria Disease’, in Visual Form 2001, vol. 2059, C. Arcelli, L. P. Cordella, and G. S. di Baja, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 739–748. doi: 10.1007/3-540-45129-3_68.
[19] G. Ongun, U. Halici, K. Leblebicioglu, V. Atalay, M. Beksac, and S. Beksac, ‘An automated differential blood count system’, in 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, 2001, vol. 3, pp. 2583–2586. doi: 10.1109/IEMBS.2001.1017309.
[20] H. Ramoser, V. Laurain, H. Bischof, and R. Ecker, ‘Leukocyte segmentation and classification in blood-smear images’, in 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005, pp. 3371–3374. doi: 10.1109/IEMBS.2005.1617200.
[21] O. Gómez, J. A. González, and E. F. Morales, ‘Image Segmentation Using Automatic Seeded Region Growing and Instance-Based Learning’, in Progress in Pattern Recognition, Image Analysis and Applications, vol. 4756, L. Rueda, D. Mery, and J. Kittler, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 192–201. doi: 10.1007/978-3-540-76725-1_21.
[22] D. Graves and W. Pedrycz, ‘Fuzzy C-Means, Gustafson-Kessel FCM, and Kernel-Based FCM: A Comparative Study’, in Analysis and Design of Intelligent Systems using Soft Computing Techniques, vol. 41, P. Melin, O. Castillo, E. G. Ramírez, J. Kacprzyk, and W. Pedrycz, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 140–149. doi: 10.1007/978-3-540-72432-2_15.
[23] S. Mohapatra, S. S. Samanta, D. Patra, and S. Satpathi, ‘Fuzzy Based Blood Image Segmentation for Automated Leukemia Detection’, in 2011 International Conference on Devices and Communications (ICDeCom), Mesra, Ranchi, India, Feb. 2011, pp. 1–5. doi: 10.1109/ICDECOM.2011.5738491.
[24] A. Von Mühlen, ‘COMPUTER IMAGE ANALYSIS OF MALARIAL PLASMODIUM VIVAX IN HUMAN RED BLOOD CELLS’, PTQ, vol. 02, no. 1, pp. 42–51, Aug. 2004, doi: 10.52571/PTQ.v1.n02.2004.AGOSTO/9_pgs_42_51.pdf.
[25] S. M. Mazalan, N. H. Mahmood, and M. A. A. Razak, ‘Automated Red Blood Cells Counting in Peripheral Blood Smear Image Using Circular Hough Transform’, in 2013 1st International Conference on Artificial Intelligence, Modelling and Simulation, Kota Kinabalu, Dec. 2013, pp. 320–324. doi: 10.1109/AIMS.2013.59.
[26] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, ‘Phoneme recognition using time-delay neural networks’, IEEE Trans. Acoust., Speech, Signal Processing, vol. 37, no. 3, pp. 328–339, Mar. 1989, doi: 10.1109/29.21701.
[27] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘Gradient-based learning applied to document recognition’, Proc. IEEE, vol. 86, no. 11, Art. no. 11, Nov. 1998, doi: 10.1109/5.726791.
[28] P. Y. Simard, D. Steinkraus, and J. C. Platt, ‘Best practices for convolutional neural networks applied to visual document analysis’, in Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings., Edinburgh, UK, 2003, vol. 1, pp. 958–963. doi: 10.1109/ICDAR.2003.1227801.
[29] R. Vaillant, ‘Original approach for the localisation of objects in images’, IEE Proc., Vis. Image Process., vol. 141, no. 4, p. 245, 1994, doi: 10.1049/ip-vis:19941301.
[30] B. H. Menze et al., ‘The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)’, IEEE Trans. Med. Imaging, vol. 34, no. 10, pp. 1993–2024, Oct. 2015, doi: 10.1109/TMI.2014.2377694.
[31] Y. Pan et al., ‘Brain tumor grading based on Neural Networks and Convolutional Neural Networks’, in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Aug. 2015, pp. 699–702. doi: 10.1109/EMBC.2015.7318458.
[32] W. Shen, M. Zhou, F. Yang, C. Yang, and J. Tian, ‘Multi-scale Convolutional Neural Networks for Lung Nodule Classification’, in Information Processing in Medical Imaging, vol. 9123, S. Ourselin, D. C. Alexander, C.-F. Westin, and M. J. Cardoso, Eds. Cham: Springer International Publishing, 2015, pp. 588–599. doi: 10.1007/978-3-319-19992-4_46.
[33] G. Carneiro, J. Nascimento, and A. P. Bradley, ‘Unregistered Multiview Mammogram Analysis with Pre-trained Deep Learning Models’, in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, vol. 9351, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi, Eds. Cham: Springer International Publishing, 2015, pp. 652–660. doi: 10.1007/978-3-319-24574-4_78.
[34] J. M. Wolterink, T. Leiner, B. D. de Vos, R. W. van Hamersvelt, M. A. Viergever, and I. Išgum, ‘Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks’, Medical Image Analysis, vol. 34, pp. 123–136, Dec. 2016, doi: 10.1016/j.media.2016.04.004.
[35] Y. Bar, I. Diamant, L. Wolf, S. Lieberman, E. Konen, and H. Greenspan, ‘Chest pathology detection using deep learning with non-medical training’, in 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), Brooklyn, NY, USA, Apr. 2015, pp. 294–297. doi: 10.1109/ISBI.2015.7163871.
[36] B. van Ginneken, A. A. A. Setio, C. Jacobs, and F. Ciompi, ‘Off-the-shelf convolutional neural network features for pulmonary nodule detection in computed tomography scans’, in 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), Brooklyn, NY, USA, Apr. 2015, pp. 286–289. doi: 10.1109/ISBI.2015.7163869.
[37] F. Ciompi et al., ‘Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box’, Medical Image Analysis, vol. 26, no. 1, pp. 195–202, Dec. 2015, doi: 10.1016/j.media.2015.08.001.
[38] T. Schlegl, J. Ofner, and G. Langs, ‘Unsupervised Pre-training Across Image Domains Improves Lung Tissue Classification’, in Medical Computer Vision: Algorithms for Big Data, vol. 8848, B. Menze, G. Langs, A. Montillo, M. Kelm, H. Müller, S. Zhang, W. Cai, and D. Metaxas, Eds. Cham: Springer International Publishing, 2014, pp. 82–93. doi: 10.1007/978-3-319-13972-2_8.
[39] J. Hofmanninger and G. Langs, ‘Mapping visual features to semantic profiles for retrieval in medical imaging’, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, Jun. 2015, pp. 457–465. doi: 10.1109/CVPR.2015.7298643.
[40] G. Carneiro and J. C. Nascimento, ‘Combining Multiple Dynamic Models and Deep Learning Architectures for Tracking the Left Ventricle Endocardium in Ultrasound Data’, IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 11, pp. 2592–2607, Nov. 2013, doi: 10.1109/TPAMI.2013.96.
[41] R. Li et al., ‘Deep Learning Based Imaging Data Completion for Improved Brain Disease Diagnosis’, in Medical Image Computing and Computer-Assisted Intervention – MICCAI 2014, vol. 8675, P. Golland, N. Hata, C. Barillot, J. Hornegger, and R. Howe, Eds. Cham: Springer International Publishing, 2014, pp. 305–312. doi: 10.1007/978-3-319-10443-0_39.
[42] M. A. Parab and N. D. Mehendale, ‘Red Blood Cell Classification Using Image Processing and CNN’, SN COMPUT. SCI., vol. 2, no. 2, p. 70, Apr. 2021, doi: 10.1007/s42979-021-00458-2.
[43] M. Xu, D. P. Papageorgiou, S. Z. Abidi, M. Dao, H. Zhao, and G. E. Karniadakis, ‘A deep convolutional neural network for classification of red blood cells in sickle cell anemia’, PLoS Comput Biol, vol. 13, no. 10, p. e1005746, Oct. 2017, doi: 10.1371/journal.pcbi.1005746.
[44] M. Zhang, X. Li, M. Xu, and Q. Li, ‘Image Segmentation and Classification for Sickle Cell Disease using Deformable U-Net’, 2017, doi: 10.48550/ARXIV.1710.08149.
[45] T. J. S. Durant, E. M. Olson, W. L. Schulz, and R. Torres, ‘Very Deep Convolutional Neural Networks for Morphologic Classification of Erythrocytes’, Clinical Chemistry, vol. 63, no. 12, pp. 1847–1855, Dec. 2017, doi: 10.1373/clinchem.2017.276345.
[46] M. Wasowicz et al., ‘Computed aided system for separation and classification of the abnormal erythrocytes in human blood’, in Biophotonics—Riga 2017, Riga, Latvia, Dec. 2017, p. 13. doi: 10.1117/12.2297218.
[47] J. Zhao, M. Zhang, Z. Zhou, J. Chu, and F. Cao, ‘Automatic detection and classification of leukocytes using convolutional neural networks’, Med Biol Eng Comput, vol. 55, no. 8, pp. 1287–1301, Aug. 2017, doi: 10.1007/s11517-016-1590-x.
[48] A. I. Shahin, Y. Guo, K. M. Amin, and A. A. Sharawi, ‘White blood cells identification system based on convolutional deep neural learning networks’, Computer Methods and Programs in Biomedicine, vol. 168, pp. 69–80, Jan. 2019, doi: 10.1016/j.cmpb.2017.11.015.
[49] F. Yang et al., ‘Deep Learning for Smartphone-Based Malaria Parasite Detection in Thick Blood Smears’, IEEE J. Biomed. Health Inform., vol. 24, no. 5, pp. 1427–1438, May 2020, doi: 10.1109/JBHI.2019.2939121.
[50] S. Raviraja, G. Bajpai, and S. K. Sharma, ‘Analysis of Detecting the Malarial Parasite Infected Blood Images Using Statistical Based Approach’, in 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006, vol. 15, F. Ibrahim, N. A. A. Osman, J. Usman, and N. A. Kadri, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 502–505. doi: 10.1007/978-3-540-68017-8_126.
[51] I. Mohanty, P. A. Pattanaik, and T. Swarnkar, ‘Automatic Detection of Malaria Parasites Using Unsupervised Techniques’, in Proceedings of the International Conference on ISMAC in Computational Vision and Bio-Engineering 2018 (ISMAC-CVB), vol. 30, D. Pandian, X. Fernando, Z. Baig, and F. Shi, Eds. Cham: Springer International Publishing, 2019, pp. 41–49. doi: 10.1007/978-3-030-00665-5_5.
[52] N. Otsu, ‘A Threshold Selection Method from Gray-Level Histograms’, IEEE Trans. Syst., Man, Cybern., vol. 9, no. 1, pp. 62–66, Jan. 1979, doi: 10.1109/TSMC.1979.4310076.
[53] D. Anggraini, A. S. Nugroho, C. Pratama, I. E. Rozi, Aulia Arif Iskandar, and Reggio Nurtanio Hartono, ‘Automated status identification of microscopic images obtained from malaria thin blood smears’, in Proceedings of the 2011 International Conference on Electrical Engineering and Informatics, Bandung, Indonesia, Jul. 2011, pp. 1–6. doi: 10.1109/ICEEI.2011.6021762.
[54] D. K. Das, A. K. Maiti, and C. Chakraborty, ‘Automated system for characterization and classification of malaria-infected stages using light microscopic images of thin blood smears: CHARACTERIZATION AND CLASSIFICATION OF MALARIA-INFECTED STAGES’, Journal of Microscopy, vol. 257, no. 3, Art. no. 3, Mar. 2015, doi: 10.1111/jmi.12206.
[55] J. A. Quinn, R. Nakasi, P. K. B. Mugagga, P. Byanyima, W. Lubega, and A. Andama, ‘Deep Convolutional Neural Networks for Microscopy-Based Point of Care Diagnostics’. arXiv, Aug. 09, 2016. Accessed: Sep. 14, 2022. [Online]. Available: http://arxiv.org/abs/1608.02989
[56] Z. Liang et al., ‘CNN-based image analysis for malaria diagnosis’, in 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Shenzhen, China, Dec. 2016, pp. 493–496. doi: 10.1109/BIBM.2016.7822567.
[57] K. M. F. Fuhad, J. F. Tuba, Md. R. A. Sarker, S. Momen, N. Mohammed, and T. Rahman, ‘Deep Learning Based Automatic Malaria Parasite Detection from Blood Smear and its Smartphone Based Application’, Diagnostics, vol. 10, no. 5, p. 329, May 2020, doi: 10.3390/diagnostics10050329.
Published
2024-12-31
How to Cite
Dilip Kumar Baruah, & Kuntala Boruah. (2024). Application of CNN in blood smeared images: A Review. Revista Electronica De Veterinaria, 25(1), 3458-3465. https://doi.org/10.69980/redvet.v25i1.1595
Section
Articles