Improving Concrete Properties Through the Blending of White Portland Cement, Mustard Husk Ash and Gypsum to Enhance Sustainability and Performance
Abstract
The effect of mustard husk ash (MHA) on white Portland cement (WPC) has been studied in this paper. The partial replacement of WPC by MHA and gypsum (GS) is investigated by different experimental techniques. Here, 12% of WPC has been replaced by MHA. We also added 3% GS. Which acts as a retarder for setting time. We examined setting times for different compositions of WPC and MHA. In some compositions, 3% GS is added. We also determine the Ca2+ ion concentration and compressive strength of blended and control WPC. Compressive strength shows that after 28 days of hydration, the strength of blended WPC is greater than control WPC. The formation of calcium-silicate-hydrate gel (C-S-H) by the pozzolanic reaction is the main reason behind this increasing strength. The formation of C-S-H gel is also shown by the Ca2+ ion concentration graph. The decrease in Ca2+ ion concentration shows that Ca2+ ions get consumed in reaction to form C-S-H. From these experiments, it is clear that 12MHA3GS blended WPC is better than control WPC.
References
2. Lee, H.; Hanif, A.; Usman, M.; Sim, J.; Oh, H.(2018) Performance evaluation of concrete incorporating glass powder and glass sludge wastes as supplementary cementing material. J. Clean. Prod., 170, 683–693.
3. Stajanca, M., & Estokova, A. (2012). Environmental Impacts of Cement Production. Technical University of Kosice, Civil Engineering Faculty, Institute of Architectural Engineering, 296–302.
4. Olivier, J.G.J.; Peters, J.A.H.W.; Janssens-Maenhout, (2012) G. Trends in Global CO2 Emissions. 2012 Report; EU Publications: The Hague, the Netherlands.
5. Yang, H.J.; Usman, M.; Hanif, (2021) A. Suitability of Liquid Crystal Display (LCD) Glass Waste as Supplementary Cementing Material (SCM): Assessment based on strength, porosity, and durability. J. Build. Eng.,42, 102793.
6. Rashad, A. M., & Zeedan, S. R. (2011). The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Construction and Building Materials, 25, 3098–3107.
7. Park, S.-S., & Kang, H.-Y. (2008). Characterization of fly ashpastes synthesized at different activator conditions. Korean Journal of Chemical Engineering, 25(1), 78–83.
8. Becchio, C, Corgnati, S.P, Kindinis,A, Pagliolico,S.(2009) Improving environmental sustainability of concrete products: investigation on MWC thermal and mechanical properties, Energy Build. 41 (11) 1127–1134.
9. Afkhami, B., Akbarian, B., Beheshti A., N., Kakaee, A., & Shabani, B. (2015). Energy consumption assessment in a cement production plant. Sustainable Energy Technologies and Assessments, 10, 84-89. https://doi.org/10.1016/j.seta.2015.03.003
10. Hanif, A.; Diao, S.; Lu, Z.; Fan, T.; Li, Z.( 2016) Green lightweight cementitious composite incorporating aerogels and fly ash cenospheres— Mechanical and thermal insulating properties. Constr. Build. Mater., 116, 422–430.
11. Kim, Y.; Hanif, A.; Usman, M.; Munir, M.J.; Kazmi, S.M.S.; Kim, S.( 2018) Slag waste incorporation in high early strength concrete as cement replacement: Environmental impact and influence on hydration; durability attributes. J. Clean. Prod., 172, 3056–3065.
12. Adjei, S., & Elkatatny, S. (2020). A highlight on the application of industrial and agro wastes in cement-based materials. Journal of Petroleum Science and Engineering, 195, 107911. https://doi.org/10.1016/j.petrol.2020.107911
13. Taylor, H. F. W. (1997). Cement chemistry. Cement Chemistry.182–183, 218–221.https://doi.org/10.1680/cc.25929
14. Locher FG, Richartz W, Sprung S. (1980) Setting of cement––Effect of adding calcium sulfate. ZKG intern.;6:271–7
15. Theisen K. (1983) Relationship between gypsum dehydration and strength development in Portland Cement. ZKG intern.;10:571–7.
16. Holderbank, (1975) Gypsum during cement grinding, Seminar on
Grinding,14–25.
17. A. Mustaqim, (2014). Pengaruh Penggunaan Semen PCC (Portland Composite Cement) Pada Fas 0,4 Terhadap Laju Peningkatan Mutu Beton," Scaffolding, vol. 3, no. 1
18. Park, H.; Jeong, Y.; Jun, Y.; Jeong, J.; Oh, J. (2016) Strength Enhancement and Pore-Size Refinement in Clinker Free Cao-Activated GGBFS Systems through Substitution with Gypsum. Cem. Concr. Compos., 68, 57–65.
19. Gao, S.; Hegg, D.A.; Hobbs, P.V.; Kirchstetter, T.W.; Magi, B.; Sadilek, M.(2003) Water-soluble organic components in aerosols associated with savanna fires in southern Africa: Identification, evolution, and distribution. J. Geophys. Res. D Atmos., 108.
20. Zhang, H.; Wang, S.; Hao, J.; Wang, X.; Wang, S.; Chai, F.; Li, M. (2016) Air pollution and control action in Beijing. J. Clean. Prod.112, 1519–1527.
21. Chandara, C., Azizli, K. A. M., Ahmad, Z. A., & Sakai, E. (2009). Use of waste gypsum to replace natural gypsum as set retarders in portland cement. Waste Management, 29(5), 1675-1679. https://doi.org/10.1016/j.wasman.2008.11.014
22. Caillahua, M. C., & Moura, F. J. (2018). Technical feasibility for use of FGD gypsum as an additive setting time retarder for Portland cement. Journal of Materials Research and Technology, 7(2), 190-197. https://doi.org/10.1016/j.jmrt.2017.08.005
23. Bhanumathidas, N., & Kalidas, N. (2004). Dual role of gypsum: Set retarder and strength accelerator. The Indian Concrete Journal, 78, 1-4.
24. Papageorgiou, A., Tzouvalas, G., & Tsimas, S. (2005). Use of inorganic setting retarders in the cement industry. Cement and Concrete Composites, 27(2), 183–189. https://doi.org/10.1016/j.cemconcomp.2004.02.005
25. Herliati, Sagitha, A., Dyah Puspita, A., Puput Dwi, R., & Salasa, A. (2021). Optimization of Gypsum Composition Against Setting Time and Compressive Strength in Clinker for PCC (Portland Composite Cement). IOP Conference Series: Materials Science and Engineering, 1053(1), 012116. https://doi.org/10.1088/1757-899x/1053/1/012116
26. Faris, M. (2021). Modern Approaches on Material Science Production Of Silica From Mustard Husk Ash. 525–529. https://doi.org/10.32474/MAMS.2021.04.000188
27. Singh N.B, Bhattacharjee K.N, Shukla A.K, (1995) " Hydration of Portland Blended cement " Cement and Concrete research, 25(5)
28. Li.Q, Coleman N.J, (2014) " Hydration kinetics, ion-release and antimicrobial properties of whit Portland cement blended with zirconium oxide nanoparticles" Dental Materials jornal, 33(6): 805–810
29. Ngun BK, Mohamad H, Sakai E, Ahmad ZA.( 2010) Effect of rice husk ash and silica fume in the ternary system on the properties of blended cement paste and concrete. J Ceram Process Res.11(3):311-315.
30. A.M. Neville, Properties of Concrete, fourth and final ed., Longman, Harlow, Essex, 1997 reprint
31. Singh NB, Das SS, Singh NP, Dwivedi VN.(2007) Hydration of bamboo leaf ash blended Portland cement. Indian J Eng Mater Sci.;14(1):69-76.
32. Kumar, R. Lal, K. Das,S. Shukla, A. K. (2023).Developing ultra-high-performance WhitePortland cement with a low environmental effect using silica-rich white sand. BioGecko A Journal for New Zealand Herpetology, 12.2:311-322. http://biogecko.co.nz/admin/uploads/BIOgecko%201.pdf
33. Lal, K., Kumar, R., Yadav, B., Shrivastava, S. K., Kumar, A., Singh, S. Y., & Das, S. (2023). incorporating white silica sand to improve mechanical and microstructural properties of ordinary portland cement. Mater. Sci. Technol., 22(12). 224-232. https://doi.org/10.10543/f0299.2023.41846
34. Sathe S, Zain Kangda M, Dandin S. (2023) An experimental study on rice husk ash concrete.MaterTodayProc.;77(December):724-728. doi: 10.1016/j.matpr.2022.11.366
35. Williams FN, Anum I, Isa RB, Aliyu M. (2014) Properties of Sorghum Husk Ash Blended Cement Laterized Concrete. Int J Res Manag Sci Technol.;2(2):73-79.
36. Abdelzaher M, A, (2022) " Performance and hydration characteristic of dark white evolution (DWE) cement composites blended with clay brick powder “Egyptian Journal of Chemistry, 65(8) ,419-42
37. Nochaiya, T., Wongkeo, W., & Chaipanich, A. (2010). Utilization of fly ash with silica fume and properties of Portland cement – fly ash – silica fume concrete. Fuel, 89(3), 768–774. https://doi.org/10.1016/j.fuel.2009.10.003
38. Lal, K., Kumar, R., Verma, S., Pandey, S., Shukla, A. K., & Das, S. (2023). concrete for a greener future : examining the utilization of silica fume and neem leaf ash to improve environmental sustainability in construction. Mater. Sci. Technol., 22(11). 124-130 https://doi.org/10.10543/f0299.2023.41775
39. Harrisson, A. M. (2019). Constitution and specification of Portland cement. In Lea’s Chemistry of Cement and Concrete (5),87-155.
40. Baltakys, K., Jauberthie, R., Siauciunas, R., & Kaminskas, R. (2007). Influence of modification of SiO₂ on the formation of calcium silicate hydrate. Materials Science-Poland, 25(3), 633-640.