Ai In Pharmaceutical Innovation: A Review Of Drug Discovery And Clinical Trial Integration

  • Yashaswini N
  • Ramesh Aravind S
  • Pavithra R
  • Anant Uday Naik
Keywords: Artificial Intelligence (AI), Drug Discovery, Clinical Trials, Molecular Design, Target Validation, Pharmaceutical Innovation.

Abstract

Artificial Intelligence has revolutionized the process of drug discovery and improved clinical trials, which lead to the reduction of time and cost. Our review highlights the role of Prescription AI in the evolution of drug development processes. The first quartile discusses QSAR modeling and binding free energy molecular docking, coupled with how these methods can be improved with AI. They are capable of predicting molecular interactions at astonishing levels of accuracy. Identifying and validating more effective drug targets with the help of AI. Utilizing machine learning and multi-omics approaches to discover novel therapies. It summarizes committee-overseen AI-driven molecular engineered drugs. For instance, drugs’ ADMET properties help design and screen lead drug candidates. AI has had a similar impact on all lines of clinical trials in consolidation. From the processes of patient specification & categorization, to novel visualization techniques. Moreover, there exists a paradigm of drug-device combinations which allows for novel drug development strategies. Untapped areas of marketed drugs and synergies in treatment may enhance efficacy. Data deficiencies, bias in algorithms and regulatory compliant mechanisms are barriers that must be addressed. This study emphasizes the efforts made to resolve the issues of ethical transparency. The review emphasises principles to stem the abuse of AI in pharmaceutical advancement. In this review, The AI is embedded across all phases of drug development process. From the inception of the drug to the testing of it on humans so as to the impact of AI on the future of healthcare. It creates a foundation for more advanced research and partnerships in pharmaceutical AI.

Author Biographies

Yashaswini N

Department of Pharmacy Practice, East West College of Pharmacy, Bengaluru, Karnataka, India

Ramesh Aravind S

Department of Pharmacy Practice, East West College of Pharmacy, Bengaluru, Karnataka, India

Pavithra R

Department of Pharmacy Practice, East West College of Pharmacy, Bengaluru, Karnataka, India

Anant Uday Naik

Department of Pharmacy Practice, East West College of Pharmacy, Bengaluru, Karnataka, India

References

Huang, D., Yang, M., Wen, X., Xia, S., & Yuan, B. (2024). AI-Driven drug discovery: Accelerating the development of novel therapeutics in biopharmaceuticals. International Medical Science Research Journal, 4(8). https://doi.org/10.51594/imsrj.v4i8.1458

Ejeta, B. M., Das, M. K., Das, S., Bekere, F. F., & Tayeng, D. (2024). Transformative Role of Artificial Intelligence in the Pharmaceutical Sector. Journal of Angiotherapy. https://doi.org/10.25163/angiotherapy.899933

Kokudeva, M., Vichev, M., Naseva, E., Miteva, D., & Velikova, T. (2024). Artificial intelligence as a tool in drug discovery and development. World Journal of Experimental Medicine, 14(3). https://doi.org/10.5493/wjem.v14.i3.96042

Han, R., Yoon, H., Kim, G., Lee, H., & Lee, Y. (2023). Revolutionizing Medicinal Chemistry: The Application of Artificial Intelligence (AI) in Early Drug Discovery. Pharmaceuticals, 16(9). https://doi.org/10.3390/ph16091259

Wenteler, A., Cabrera, C. P., Wei, W., Neduva, V., & Barnes, M. R. (2024). AI approaches for the discovery and validation of drug targets. None. https://doi.org/10.1017/pcm.2024.4

Alanazi, A. A. A., Al Fahad, A. I. A., Almorshed, A. S. A., Alrbian, A. A. M., Alnughaymishi, A. A. S., Al-Mutairi, N. H. B., & Alajmi, A. A. (2022). Artificial intelligence in drug discovery: Current applications and future directions. International Journal of Health Sciences, 6(10). https://doi.org/10.53730/ijhs.v6ns10.15290

Deng, J., Yang, Z., Samaras, D., & Wang, F. (2021). Artificial Intelligence in Drug Discovery: Applications and Techniques. None. https://doi.org/10.1093/bib/bbab430

T, S., Kaliappan, S., Ali, H., & Vijay Kumar, B. (2024). AI - Driven Drug Discovery and Therapeutic Target Identification for Rare Genetic Diseases. None. https://doi.org/10.1109/ASSIC60049.2024.10507989

Matsuzaka, Y., & Yashiro, R. (2022). Applications of Deep Learning for Drug Discovery Systems with BigData. BioMedInformatics, 2(4). https://doi.org/10.3390/biomedinformatics2040039

Deepthimahanthi, Y. P., Balu, P., Shing, W. L., Krishnan, K., Manjunathan, J., Ashokkumar, K., Jayanthi, M., Suganthi, M., & Abirami, G. (2023). AI-Based Drug Design: Revolutionizing Drug Discovery through in Silico Analysis. None. https://doi.org/10.61453/intij.202356

McGibbon, M., Shave, S., Dong, J., Gao, Y., Houston, D. R., Xie, J., Yang, Y., Schwaller, P., & Blay, V. (2023). From intuition to AI: Evolution of small molecule representations in drug discovery. None. https://doi.org/10.1093/bib/bbad422

Walters, W., & Barzilay, R. (2021). Critical assessment of AI in drug discovery. Expert Opinion on Drug Discovery, 16(2), 91–101. https://doi.org/10.1080/17460441.2021.1915982

Vinayak, N. V., Lingolu, D., Kumari, D., & Kumar, P. (2024). Evaluating the Impact of AI and ML on Modern Drug Discovery. None. https://doi.org/10.69613/8tckqp18

Harrer, S., Shah, P., Antony, B., & Hu, J. (2019). Artificial Intelligence for Clinical Trial Design. Elsevier BV. https://doi.org/10.1016/j.tips.2019.05.005

Serrano, D., Luciano, F. C., Anaya, B. J., Ongoren, B., Kara, A., Molina, G., Ramirez, B. I., Snchez-Guirales, S. A., Simon, J. A., Tomietto, G., Rapti, C., Ruiz, H. K., Rawat, S., Kumar, D., & Lalatsa, A. (2024). Artificial Intelligence (AI) Applications in Drug Discovery and Drug Delivery: Revolutionizing Personalized Medicine. Pharmaceutics, 16(10). https://doi.org/10.3390/pharmaceutics16101328

Mohapatra, M., Sahu, C., & Mohapatra, S. (2024). Trends of Artificial Intelligence (AI) Use in Drug Targets, Discovery and Development: Current Status and Future Perspectives. Current Drug Targets. https://doi.org/10.2174/0113894501322734241008163304

Shaheen, M. Y. (2021). Applications of Artificial Intelligence (AI) in healthcare: A review. None. https://doi.org/10.14293/s2199-1006.1.sor-.ppvry8k.v1

Chen, D., Cao, C., Kloosterman, R., Parsa, R., & Raman, S. (2024). Trial Factors Associated With Completion of Clinical Trials Evaluating AI: Retrospective Case-Control Study. Journal of Medical Internet Research. https://doi.org/10.2196/58578

Visan, A., & Negu, I. (2024). Integrating Artificial Intelligence for Drug Discovery in the Context of Revolutionizing Drug Delivery. None. https://doi.org/10.3390/life14020233

Dhudum, R., Ganeshpurkar, A., & Pawar, A. (2024). Revolutionizing Drug Discovery: A Comprehensive Review of AI Applications. None. https://doi.org/10.3390/ddc3010009

Sumathi, S., Suganya, K., Swathi, K., Sudha, B., Poornima, A., Varghese, C. A., & Aswathy, R. (2023). A Review on Deep Learning-Driven Drug Discovery: Strategies, Tools, and Applications. Current Pharmaceutical Design. https://doi.org/10.2174/1381612829666230412084137

Ashiwaju, B., Orikpete, O., & Uzougbo, C. (2023). The intersection of artificial intelligence and big data in drug discovery: A review of current trends and future implications. Matrix Science Pharma. https://doi.org/10.4103/mtsp.mtsp_14_23

23. Patil, P., Nrip, N. K., Hajare, A., Hajare, D. A., Patil, M. K., Kanthe, R., & Gaikwad, A. T. (2023). Artificial Intelligence and Tools in Pharmaceuticals: An Overview. Research Journal of Pharmacy and Technology. https://doi.org/10.52711/0974-360x.2023.00341

Protrka, N., & Abazi, B. (2024). Artificial Intelligence in Health Care: Various Applications. International Convention on Information and Communication Technology, Electronics and Microelectronics. https://doi.org/10.1109/MIPRO60963.2024.10569971

Blanco-González, A., Cabeza, A., Seco-González, A., Conde-Torres, D., Antelo-Riveiro, P., Piñeiro, Á., & García-Fandiño, R. (2023). The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/ph16060891

Hasselgren, C., & Oprea, T. I. (2023). Artificial Intelligence for Drug Discovery: Are We There Yet? Annual Reviews. https://doi.org/10.1146/annurev-pharmtox-040323-040828

Niazi, S. K. (2023). The Coming of Age of AI/ML in Drug Discovery, Development, Clinical Testing, and Manufacturing: The FDA Perspectives. Drug Design, Development, and Therapy. https://doi.org/10.2147/DDDT.S424991

Usmani, U. A., & Usmani, M. U. (2023). AI-Driven Biomedical and Health Informatics: Harnessing Artificial Intelligence for Improved Healthcare Solutions. None. https://doi.org/10.1109/INCOFT60753.2023.10425780

Nuthakki, S. K., & Siddhartha, K. (2023). AI and The Future of Medicine: Pioneering Drug Discovery with Language Models. International Journal of Science and Research (IJSR). https://doi.org/10.21275/sr24304173757

Singh, S., Kumar, R., Payra, S., & Singh, S. K. (2023). Artificial Intelligence and Machine Learning in Pharmacological Research: Bridging the Gap Between Data and Drug Discovery. Cureus, Inc.. https://doi.org/10.7759/cureus.44359

Gabashvili, A. U., & Irene, S. (2023). Artificial Intelligence in Biomedicine: Systematic Review. medRxiv. https://doi.org/10.1101/2023.07.23.23292672

Kokudeva, M., Vichev, M., Naseva, E., Miteva, D., & Velikova, T. (2024). Artificial intelligence as a tool in drug discovery and development. World Journal of Experimental Medicine, 14(3), 960–976. https://doi.org/10.5493/wjem.v14.i3.96042

Burri, S. R., Diallo, M. Y., Sharma, L., & Dutt, V. (2023). AI-Driven Drug Discovery: Unravelling the Potential of Generative Adversarial Networks (GANs) in Pharmaceutical Research. None. https://doi.org/10.1109/ICTACS59847.2023.10390116

Alanazi, A. A. A., Al Fahad, A. I. A., Almorshed, A. S. A., Alrbian, A. A. M., Alnughaymishi, A. A. S., Al-Mutairi, N. H. B., Alajmi, A. A., & Al Otaibi, S. G. (2022). Artificial intelligence in drug discovery: Current applications and future directions. International Journal of Health Sciences, 6(10), 152–163. https://doi.org/10.53730/ijhs.v6ns10.15290

Zeb, S., Fnu, N., Abbasi, N., & Fahad, M. (2024). AI in Healthcare: Revolutionizing Diagnosis and Therapy. None. https://doi.org/10.47709/ijmdsa.v3i3.4546

Askr, H., Elgeldawi, E., & Ella, A. E. (2023). Deep learning in drug discovery: An integrative review and future challenges. Artificial Intelligence Review, 56, 5975–6037. https://doi.org/10.1007/s10462-022-10306-13

T., B., & Mansoor, Z. J. (2021). Using drug–drug and protein-protein similarities as feature vectors for drug–target binding prediction. Chemometrics and Intelligent Laboratory Systems, 217, 104405. https://doi.org/10.1016/j.chemolab.2021.104405

Tropsha, A., Isayev, O., Varnek, A., Schneider, G., & Cherkasov, A. (2024). Integrating QSAR modeling and deep learning in drug discovery: The emergence of deep QSAR. Nature Reviews Drug Discovery, 23(2), 141–155. https://doi.org/10.1038/s41573-023-00832-0

Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., Ambasta, R. K., & Kumar, P. (2021). Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Molecular Diversity, 25(3), 1315–1360. https://doi.org/10.1007/s11030-021-10217

Vatansever, S., Schlessinger, A., Wacker, D., Kaniskan, H. Ü., Jin, J., Zhou, M. M., & Zhang, B. (2021). Artificial intelligence and machine learning-aided drug discovery in central nervous system diseases: State-of-the-arts and future directions. Medical Research Reviews, 41(5), 1427–1473. https://doi.org/10.1002/med.21764

Dhamodharan, G., & Mohan, C. G. (2022). Machine learning models for predicting the activity of AChE and BACE1 dual inhibitors for the treatment of Alzheimer’s disease. Molecular Diversity, 26(2), 175–183. https://doi.org/10.1007/s11030-021-10282

Zhou, Y., Wang, F., Tang, J., Nussinov, R., & Cheng, F. (2020). Artificial intelligence in COVID-19 drug repurposing. The Lancet Digital Health, 2(11), e667–e676. https://doi.org/10.1016/S2589-7500(20)30192-8

Verma, N., Qu, X., Trozzi, F., Elsaied, M., Karki, N., Tao, Y., Zoltowski, B., Larson, E. C., & Kraka, E. (2021). Predicting potential SARS-CoV-2 drugs: In-depth drug database screening using deep neural network framework SSNet, classical virtual screening, and docking. International Journal of Molecular Sciences, 22(4), 1392. https://doi.org/10.3390/ijms22041573

Bung, N., Krishnan, S. R., Bulusu, G., & Roy, A. (2021). De novo design of new chemical entities for SARS-CoV-2 using artificial intelligence. Future Medicinal Chemistry, 13(6), 575–585. https://doi.org/10.4155/fmc-2020-0262

Lv, H., Shi, L., Berkenpas, J. W., Dao, F. Y., Zulfiqar, H., Ding, H., Zhang, Y., Yang, L., & Cao, R. (2021). Application of artificial intelligence and machine learning for COVID-19 drug discovery and vaccine design. Briefings in Bioinformatics, 22(6), bbab320. https://doi.org/10.1093/bib/bbab320

Published
2024-12-03
How to Cite
Yashaswini N, Ramesh Aravind S, Pavithra R, & Anant Uday Naik. (2024). Ai In Pharmaceutical Innovation: A Review Of Drug Discovery And Clinical Trial Integration. Revista Electronica De Veterinaria, 25(1), 2892-2898. https://doi.org/10.69980/redvet.v25i1.1419
Section
Articles