Role Of Lotus (Nelumbo Nucifera) In Phytoremediation Of Heavy Metals And Water Quality Improvement
Abstract
The environment of earth is being threatened by many pollutants specially the heavy metals discharged from point and non- point sources. Removal of heavy metals from wastewater is necessary for clean the environment and ecosystem. Heavy metals are spread wildly in water effect the aquatic ecosystem and organism of ponds and lakes. The purpose of this study that the phytoremediation of pollutants caused in Ponds and lakes released by industries and agriculture waste using Nelumbo nucifera (Lotus plant). This research focus on capability of Lotus plant in water treatment by eco- friendly and sustainable methods for physiochemical pollutants and heavy metals. This phytoremediation experiment was conducted using selected concentration 25 % of different pond and lake waste water for 21 days in three different seasons of 2022 and 2023 in Rajasthan. The results showed that Nelumbo nucifera can reduced the physiochemical pollutants and heavy metals from water. The maximum reduction of TSS by 50%, COD by 39%, DO increase by 39%, TDS reduced by 30%, BOD by 27%, pH by 12 % and heavy metals ( Lead : 33%, Copper : 30%, Fluoride : 22% and Nitrate : 22%). This study contribute to the application of lotus aquatic plant to heavy metals removal from moderately contaminated lake and pond. Bioaccumulation of heavy metals in lotus stem and roots by enzymes and microbes, it is affected by temperature and Ph of water. Massive roots and leaf of lotus have large surface area for reduction of physiochemical pollutants from water.
References
2. Akinbile, C. O., & Yusoff, M. S. (2012). ‘Assessing water hyacinth (Eichhornia crassipes) and lettuce (Pistia stratiotes) effectiveness in aquaculture wastewater treatment’. ‘International Journal of Phytoremediation’, 14(3), 201-211. doi:10.1080/15226514.2011.619236.
3. Azov, Y. (1982). ‘Effect of pH on inorganic carbon uptake in algal photosynthesis’. ‘Water Research’, 16(1), 53-57. doi:10.1016/0043-1354(82)90116-5.
4. Barman, M., & Ghosh, D. (2018). ‘Impact of total dissolved solids on water bodies: A review of organic and inorganic forms’. ‘Hydrobiologia’, 823, 45-56. doi:10.1007/s10750-017-3517-0.
5. Brix, H. (1989). ‘Biological oxygen demand and lotus plants’. ‘Aquatic Botany’, 34(1-2), 155-168. doi:10.1016/0304-3770(89)90035-6.
6. Camargo, J. A. (2003). ‘Fluoride toxicity to aquatic organisms’. ‘Chemosphere’, 50(3), 251-264. doi:10.1016/S0045-6535(02)00585-0.
7. Chen, Y., & Liu, P. (2023). ‘Phytoremediation of lead from water using lotus plant modifications’. ‘Environmental Science: Processes & Impacts’, 25, 1321-1329. doi:10.1039/ d3em00256c.
8. Croteau, M. N., & Luoma, S. N. (2011). ‘Lead toxicity in aquatic organisms’. ‘Aquatic Toxicology’, 104(3-4), 157-173. doi:10.1016/j.aquatox.2011.05.010.
9. Dyah Puspito Rukmi, D., & Kurniawan, R. (2014). ‘The effect of water hyacinth (Eichhornia crassipes) and lotus (Nelumbo nucifera) on total dissolved solids in wastewater treatment’. ‘Procedia Environmental Sciences’, **20**, 395-402. doi:10.1016/j.proenv.2014.03.048.
10. Elias, G., et al. (2014). ‘Rhizofiltration in the Remediation of Contaminated Waters’. ‘International Journal of Phytoremediation’, 16(5), 487-502. doi:10.1080/15226514.2013.810582.
11. Feng, X., et al. (2018). ‘Use of Biological Techniques for Wastewater Treatment’. ‘Applied Microbiology and Biotechnology’, 102(5), 2119-2131. doi:10.1007/s00253-018-8780-7.
12. Garrido-Cardenas, J.A., et al. (2020). ‘Advanced Oxidation Processes for the Removal of Antibiotics from Wastewater’. ‘Journal of Environmental Management’, 261, 110235. doi:10.1016/j.jenvman.2020.110235.
13. Gupta, D. K., & Nicoloso, F. T. (2014). ‘Heavy metal stress and phytoremediation by aquatic plants’. ‘Ecotoxicology and Environmental Safety’, ‘105’, 177-183. doi:10.1016/ j.ecoenv.2014.04.032
14. . 14. Hamidon, N., Noor, A., & Hamidon, N. A. (2020). ‘Phytoremediation of suspended solids using lotus and duckweed’. ‘International Journal of Phytoremediation’, 2 (1), 77-85. doi:10.1080/15226514.2019.1615772.
15. 15.Hainfellner, E., & Rahmat, S. (2018). ‘Biodegradation of organic waste and reduction of TSS in water’. ‘Journal of Environmental Quality’, 47, 86-92. doi:10.2134/jeq2018.02.0098
16. Jasrotia, A., & Kansal, M. (2017). ‘Efficiency of lotus and duckweed in treating wastewater: Comparative study’. Environmental Science and Pollution Research, 24(3), 2456-2465. doi:10.1007/s11356-016-7989-9.
17. Jain, A.K., et al. (2003). ‘Effects of Industrial Pollution on Rivers and Water Bodies in Rajasthan’. ‘Indian Journal of Environmental Protection’, 23(7), 754-762.
18. Khellaf, N., & Zerdaoui, M. (2009). ‘Accumulation of Zinc and Nickel by *Water Hyacinth (*Eichhornia crassipes*)’. ‘Journal of Hazardous Materials’, 157(1), 363-368. doi:10.1016/ j.jhazmat.2008.10.010.
19. Kumar, P.B., et al. (1995). ‘Phytoextraction: The Use of Plants to Remove Heavy Metals from Soils’. ‘Environmental Science and Technology’, 29(5), 1232-1238. doi:10.1021/es00005a014.
20. Langston, W. J. (1990). ‘Toxic effects of metals in aquatic environments’. ‘Marine Environmental Research’, 30, 1-40. doi:10.1016/0141-1136(90)90002-4.
21. Lee, J., & Yang, J. (2006). ‘Nitrogen reduction in ponds with lotus plants**. *Hydrobiologia’, 573, 103-113. doi:10.1007/s10750-006-0274-1.
22. Liu, H., & Wang, Y. (2021). ‘Microbial interaction with lotus roots in reducing copper contamination’. ‘Applied Microbiology and Biotechnology’, 105(3), 1045-1056. doi:10.1007/ s00253-020-11146-w.
23. Mehta, D., & Gaur, J. P. (2015). ‘Use of algae for removing heavy metal ions from wastewater: Progress and prospects’. ‘Critical Reviews in Biotechnology’, 35(4), 435-454. doi:10.3109/07388551.2014.900179.
24. Mohanty, S., et al. (2005b).Phytoremediation of Heavy Metals Using Native Plant Species’. ‘Journal of Environmental Quality’, 34(4), 1239-1246. doi:10.2134/jeq2004.0216.
25. N. S. Abd Rasid, F., & Hashim, A. (2019). ‘Phytoremediation of COD and BOD using aquatic plants’. ‘Water Research’, 148, 432-439. doi:10.1016/j.watres.2018.11.021.
26. Okunowo, W.O., & Ogunkanmi, L.A. (2010). ‘Aquatic Plants for Phytoremediation of Contaminants from Wastewater’. ‘Journal of Environmental Science and Health’, 45(5), 521-528. doi:10.1080/03601231003719594.
27. Raskin, I. (2000). ‘Plant-Based Technologies for Removal of Metals from Water: Phytoremediation of Contaminated Waters’. ‘Environmental Science and Technology’, 34(15), 303-308. doi:10.1021/es980420q.
28. Saha, P., et al. (2015). ‘Duckweed Phytoremediation of Heavy Metals from Contaminated Water’. ‘Ecological Engineering’, 81, 47-52. doi:10.1016/j.ecoleng.2015.04.008.
29. Salt, D. E., & Krämer, U. (1998). ‘Mechanisms of metal accumulation in plants’. ‘Phytoremediation of Toxic Metals’, 12, 25-43. doi:10.1007/978-1-4615-5332-7_2.
30. Shakibaie, M., et al. (2008). ‘Toxic Effects of Heavy Metals on Environment’. ‘Journal of Environmental Biology’, 29(4), 683-688.
31. Singh, D., Tiwari, A., & Gupta, R. (2012). ‘Bioremediation of Contaminants from Water Using Microbes’. ‘Water Resources Management’, 26(9), pp.
32. Singh, J. S., & Reddy, M. S. (2003). ‘Phytoremediation of Organic and Inorganic Contaminants’. ‘Environmental Science and Pollution Research’, 10(4), 223-229. doi:10.1065/ espr2003.04.149
33. Subramanian, K., & Nair, V. (2010). ‘Toxicity of Heavy Metals on Aquatic Plants: A Review’. ‘Journal of Environmental Quality’, 39(6), 1951-1958. doi:10.2134/jeq2010.0200.
34. Tiwari, R., & Shukla, K. (2021). ‘Heavy Metal Contamination and its Impact on Aquatic Plants’. ‘Journal of Water and Health’, 19(2), 223-234. doi:10.2166/wh.2021.061.
35. Vasantha, S., & Kumar, P. (2019). ‘Role of aquatic plants in wastewater treatment’. ‘Environmental Monitoring and Assessment’, 191(10), 651. doi:10.1007/s10661-019-7813-8.
36. Wang, X., & Zhang, Y. (2014). ‘Phytoremediation of Wastewater Using Aquatic Plants’. ‘International Journal of Environmental Science and Technology’, 11(2), 657-666. doi:10.1007/ s13762-013-0293-8
37. Yadav, P., et al. (2019). ‘Effectiveness of Lotus in Reducing Water Pollution’. ‘Journal of Environmental Management’, 243, 1-10. doi:10.1016/j.jenvman.2019.05.051.
38. Yoon, J., et al. (2006). ‘Lead Phytoremediation by Lotus and Water Hyacinth’. ‘Environmental Science and Technology’, 40(14), 4571-4577. doi:10.1021/es0601954.
39. Zhang, X., & Liu, W. (2022). ‘Phytoremediation of Nitrogen and Phosphorus using Aquatic Plants. ‘Journal of Environmental Quality’, 51(2), 245-256. doi:10.2134/jeq2021.08.0352