Bio-Inspired Synthesis Of Nanoparticles Using Calotropis Gigantea: A Mini-Review

  • Dr. D. Sailaja
Keywords: Nanotechnology, Metallic nanoparticles, Green synthesis, Calotropis gigantea

Abstract

The bio-inspired synthesis of nanoparticles using Calotropis gigantea represents an eco-friendly and efficient approach to nanomaterial production. This mini-review focuses on the methods and applications of metallic nanoparticles synthesized from the plant extracts of C. gigantea, including silver (AgNPs), zinc oxide (ZnO NPs), magnesium oxide (MgO NPs), nickel (Ni/NiO NPs), titanium dioxide (TiO₂ NPs), and copper oxide (CuO NPs). Phytochemicals present in C. gigantea, such as flavonoids, terpenoids, and polyphenols, act as reducing and stabilizing agents during nanoparticle formation, eliminating the need for harsh chemicals. These nanoparticles exhibit remarkable properties, including antimicrobial, anticancer, antioxidant, and insecticidal activities, making them suitable for diverse applications in biomedicine, agriculture, and environmental remediation. This review highlights C. gigantea plant potential as a sustainable source for nanoparticle synthesis and emphasizes its future prospects in advancing green nanotechnology.

Author Biography

Dr. D. Sailaja

Assistant Professor, Department of Zoology, Government College (Autonomous), Rajahmundry,  Andhra Pradesh, India

References

[1] G.M. Whitesides, Nanoscience, Nanotechnology, and Chemistry, Small. 1 (2005) 172–179. https://doi.org/https://doi.org/10.1002/smll.200400130.
[2] S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio, Molecules-25-00112-V2.Pdf, Molecules. 25 (2020) 1–15.
[3] I. Capek, 1 - Nanotechnology and nanomaterials, in: I. Capek (Ed.), Nanocomposite Struct. Dispersions (Second Ed., Second Edi, Elsevier, Amsterdam, 2019: pp. 1–93. https://doi.org/https://doi.org/10.1016/B978-0-444-63748-2.00001-8.
[4] A.A. Omar, M. Shahalaei, A.K. Azad, A review of metallic nanoparticles : present issues and prospects focused on the preparation methods , characterization techniques , and their theranostic applications, (2024) 1–20. https://doi.org/10.3389/fchem.2024.1398979.
[5] G.E.L.C. Roitoru, D.I.R.P. Îrvulescu, A.D.G.A.N. Iculescu, Metallic nanomaterials – targeted drug delivery approaches for improved bioavailability , reduced side toxicity , 65 (2024) 145–158. https://doi.org/10.47162/RJME.65.2.01.
[6] M.S.B. Madhavi, K. Donti, R. Nagaraju, U. Dasari, A Review on Metallic Nanoparticles, (2024) 1–17. https://doi.org/10.55041/IJSREM33709.
[7] Yashaswini, G.A. Swetha, V.S. Betageri, M.S. Latha, Y.B. Vinaykumar, Metallic Nanoparticles for Biomedical Applications, in: R. Javed, J.-T. Chen, A.T. Khalil (Eds.), Nanomater. Biomed. Bioeng. Appl., Springer Nature Singapore, Singapore, 2024: pp. 459–478. https://doi.org/10.1007/978-981-97-0221-3_18.
[8] S. Nazir, J.-M. Zhang, M. Junaid, S. Saleem, A. Ali, A. Ullah, S. Khan, Metal-based nanoparticles: basics, types, fabrications and their electronic applications, 238 (2024) 965–995. https://doi.org/doi:10.1515/zpch-2023-0375.
[9] P. Shrutee, T. Anjali, Regulatory Aspects, Types and Bioapplications of Metallic Nanoparticles: A Review, Curr. Drug Deliv. 20 (2023) 857–883. https://doi.org/http://dx.doi.org/10.2174/1567201819666220817110025.
[10] M. Roy, P. Mukherjee, Bio-inspired Synthesis of Nanomaterials, in: A.K. Tyagi, R.S. Ningthoujam (Eds.), Handb. Synth. Strateg. Adv. Mater. Vol. Tech. Fundam., Springer Singapore, Singapore, 2021: pp. 589–622. https://doi.org/10.1007/978-981-16-1807-9_18.
[11] W. Han, S.R. MacEwan, A. Chilkoti, G.P. López, Bio-inspired synthesis of hybrid silica nanoparticles templated from elastin-like polypeptide micelles, Nanoscale. 7 (2015) 12038–12044. https://doi.org/10.1039/C5NR01407G.
[12] B. Rajalakshmi, N. Singh, A. Madhavi, I. Khan, A. Abdulhussein, Bio- inspired Nanomaterial ’ s for Energy Harvesting and Storage : A Green Approach, 01122 (2024) 1–11.
[13] L.M. Anaya-esparza, C. Arnulfo, E. Rodr, F. Mart, Plant-Based Extracts as Reducing , Capping , and Stabilizing Agents for the Green Synthesis of Inorganic Nanoparticles, (2024).
[14] N. Monica Ahmad, A. Husaini Mohamed, N. Hasan, N. Zainal- Abidin, M. Zaini Nawahwi, A. Mohamad Azzeme, Effect of optimisation variable and the role of plant extract in the synthesis of nanoparticles using plant-mediated synthesis approaches, Inorg. Chem. Commun. 161 (2024) 111839. https://doi.org/https://doi.org/10.1016/j.inoche.2023.111839.
[15] S. Mandal, Calotropis gigantea : A brief Study on Phytochemical and Pharmacological Profile, 13 (2023) 34–40. https://doi.org/10.52711/2231-5691.2023.00006.
[16] J. C, N. Mohan Das, R. Periakaruppan, Bioactive compounds of Calotropis gigantea for cancer treatment, Oral Oncol. Reports. 10 (2024) 100336. https://doi.org/https://doi.org/10.1016/j.oor.2024.100336.
[17] T. Zulfikar, A. Sutriana, A. Rozaliyana, Phytochemical screening of three extraction process of Calotropis gigantea, IOP Conf. Ser. Earth Environ. Sci. 1356 (2024) 12082. https://doi.org/10.1088/1755-1315/1356/1/012082.
[18] S. Sivapalan, S. Dharmalingam, V. Venkatesan, M. Angappan, V. Ashokkumar, Phytochemical analysis, anti-inflammatory, antioxidant activity of Calotropis gigantea and its therapeutic applications, J. Ethnopharmacol. 303 (2023) 115963. https://doi.org/https://doi.org/10.1016/j.jep.2022.115963.
[19] P. Kemala, K. Khairan, M. Ramli, G.M. Idroes, E. Mirda, D. Setya, Characterizing the Size Distribution of Silver Nanoparticles Biofabricated Using Calotropis gigantea from Geothermal Zone, 1 (2023). https://doi.org/10.60084/hjas.v1i2.21.
[20] N. Using, P. Kemala, R. Idroes, K. Khairan, M. Ramli, Z. Jalil, G.M. Idroes, T.E. Tallei, Z. Helwani, E. Safitri, M. Iqhrammullah, R. Nasution, Green Synthesis and Antimicrobial Activities of Silver Nanoparticles Using Calotropis gigantea from Ie Seu-Um Geothermal Area, Aceh Province, Indonesia, (2022) 1–13.
[21] S. Mathew, C.P. Victório, J. Sidhi M S, B.T. B.H, Biosynthesis of silver nanoparticle using flowers of Calotropis gigantea (L.) W.T. Aiton and activity against pathogenic bacteria, Arab. J. Chem. 13 (2020) 9139–9144. https://doi.org/https://doi.org/10.1016/j.arabjc.2020.10.038.
[22] M. Iniya, Research Article Insecticidal Effects of Biosynthesized Silver Nanoparticles from Calotropis Species on Tribolium casteneum, 79 (2023) 69–74. https://doi.org/10.47583/ijpsrr.2023.v79i01.014.
[23] P. Gobinath, P. Packialakshmi, A.A. Hatamleh, M.A. Al-Dosary, Y.A. Al-Wasel, R. Balasubramani, R. Surendrakumar, A. Idhayadhulla, Calotropis gigantea Assisted Synthesis of Zinc Oxide Nanoparticle Catalysis: Synthesis of Novel 3-Amino Thymoquinone Connected 1,4-Dihyropyridine Derivatives and Their Cytotoxic Activity, J. Nanomater. 2022 (2022). https://doi.org/10.1155/2022/9697057.
[24] A. Farooq, U.A. Khan, H. Ali, M. Sathish, S.A.H. Naqvi, S. Iqbal, H. Ali, I. Mubeen, M.B. Amir, W.F.A. Mosa, A. Baazeem, M. Moustafa, S. Alrumman, A. Shati, S. Negm, Green Chemistry Based Synthesis of Zinc Oxide Nanoparticles Using Plant Derivatives of Calotropis gigantea (Giant Milkweed) and Its Biological Applications against Various Bacterial and Fungal Pathogens, Microorganisms. 10 (2022). https://doi.org/10.3390/microorganisms10112195.
[25] J. Pathak, S. Bharatbhai Akhani, M. Singh Rathore, Structural and photoluminescence properties of green synthesized ZnO nanoparticles from Calotropis gigantea leaves, Mater. Today Proc. (2024). https://doi.org/https://doi.org/10.1016/j.matpr.2024.01.004.
[26] J. C, R. Periakaruppan, V. Romanovski, K.S. Vijai Selvaraj, N. Al-Dayan, Calotropis Gigantea Latex-Derived Zinc Oxide Nanoparticles: Biosynthesis, Characterization, and Biofunctional Applications, Eng. 5 (2024) 1399–1406. https://doi.org/10.3390/eng5030073.
[27] Y.S. Hii, J. Jeevanandam, Y.S. Chan, Plant mediated green synthesis and nanoencapsulation of MgO nanoparticle from Calotropis gigantea: Characterisation and kinetic release studies, Inorg. Nano-Metal Chem. 48 (2018) 620–631. https://doi.org/10.1080/24701556.2019.1569053.
[28] M.-A. Gatou, E. Skylla, P. Dourou, N. Pippa, M. Gazouli, N. Lagopati, E.A. Pavlatou, Magnesium Oxide (MgO) Nanoparticles: Synthetic Strategies and Biomedical Applications, Crystals. 14 (2024). https://doi.org/10.3390/cryst14030215.
[29] S. Peer Mohamed, Fabrication and Characterization of Nickel Nanoparticles using Calotropis gigantea for Antimalarial Applications, J. Environ. Nanotechnol. 12 (2023) 6–10. https://doi.org/10.13074/jent.2023.03.231465.
[30] M.I. Din, A.G. Nabi, A. Rani, A. Aihetasham, M. Mukhtar, Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: Catalytic and antimicrobial potentials, Environ. Nanotechnology, Monit. Manag. 9 (2018) 29–36. https://doi.org/https://doi.org/10.1016/j.enmm.2017.11.005.
[31] P. Arunkumar, P. Ganapathi, J. Gugan, K.N. Sri, D. Vijayakumar, Anticancer Activity and Green Synthesized TiO2 Nanoparticles From Calotropis Gigantea Leaves Extract, Int. J. Res. Appl. Sci. Eng. Technol. 12 (2024) 1726–1737. https://doi.org/10.22214/ijraset.2024.59719.
[32] V. Prashanth, K. Priyanka, N. Remya, Solar photocatalytic degradation of metformin by TiO2synthesized using Calotropis gigantea leaf extract, Water Sci. Technol. 83 (2021) 1072–1084. https://doi.org/10.2166/wst.2021.040.
[33] S. Pavithra, T.C. Bessy, M.R. Bindhu, R. Venkatesan, R. Parimaladevi, M.M. Alam, J. Mayandi, M. Umadevi, Photocatalytic and photovoltaic applications of green synthesized titanium oxide (TiO2) nanoparticles by Calotropis gigantea extract, J. Alloys Compd. 960 (2023) 170638. https://doi.org/https://doi.org/10.1016/j.jallcom.2023.170638.
[34] G.A. Govindasamy, R.B.S.M.N. Mydin, S. Sreekantan, N.H. Harun, Compositions and antimicrobial properties of binary ZnO–CuO nanocomposites encapsulated calcium and carbon from Calotropis gigantea targeted for skin pathogens, Sci. Rep. 11 (2021) 1–14. https://doi.org/10.1038/s41598-020-79547-w.
[35] D. Ayodhya, G. Veerabhadram, Preparation, Characterization, Photocatalytic, Sensing and Antimicrobial Studies of Calotropis gigantea Leaf Extract Capped CuS NPs by a Green Approach, J. Inorg. Organomet. Polym. Mater. 27 (2017) 215–230. https://doi.org/10.1007/s10904-017-0672-z.
[36] P. Kumari, P.K. Panda, E. Jha, K. Kumari, K. Nisha, M.A. Mallick, S.K. Verma, Mechanistic insight to ROS and Apoptosis regulated cytotoxicity inferred by Green synthesized CuO nanoparticles from Calotropis gigantea to Embryonic Zebrafish, Sci. Rep. 7 (2017) 1–17. https://doi.org/10.1038/s41598-017-16581-1.
Published
2024-10-11
How to Cite
Dr. D. Sailaja. (2024). Bio-Inspired Synthesis Of Nanoparticles Using Calotropis Gigantea: A Mini-Review. Revista Electronica De Veterinaria, 25(1S), 1411 -1415. https://doi.org/10.69980/redvet.v25i1S.1186