Exploring Network Pharmacology And Docking Analysis Of Bioactive Compounds In Kattuyanam Rice Extract Targeting Key Diabetes Pathways
Abstract
Background: Diabetes, a chronic metabolic disorder, poses significant health challenges globally. Recent research has highlighted the potential possible link between higher consumption of polished white rice and increased diabetes risk. On the other hand, pigmented rice varieties have gained attention due to their rich phytoconstituents and antioxidant properties. Kattuyanam, one such pigmented rice variety from Tamil Nadu is very well known for its antidiabetic property and low glycemic index.
Objectives: To evaluate the anti-diabetic potential of the Kattuyanam rice extract through In vitro and In silico studies.
Methods: Kattuyanam rice extract was analyzed for its inhibitory effects against α-amylase and α-glucosidase enzymes. Gas Chromatography-Mass Spectrometry (GC-MS) was employed to identify the phytochemical constituent of the extract. Additionally, Network Pharmacology analysis, including target gene prediction, and functional enrichment was conducted to explore the bioactive compounds and their mechanisms of action. Molecular docking studies were performed to assess the interactions between these bioactive compounds and target receptors.
Result and Conclusions: The Kattuyanam rice extract demonstrates potent inhibitory effects against α-amylase and α-glucosidase enzymes, crucial targets in diabetes management. GC-MS analysis of the rice extract unveiled the presence of number of Phytochemicals with therapeutic potentials. Through network pharmacology studies, a total of 204 target genes related toT2DM were identified primarily linked to responses to organic substances, regulation to biological quality, stress and chemical stimulus suggesting the involvement of PI3K-Akt and AGE-RAGE signaling pathways in the treatment of T2DM with Kattuyanam rice extract. Molecular docking studies supported these findings, revealing favourable interactions between the bioactive compounds of Kattuyanam rice and target receptors. These results offer insights into the potential of Kattuyanam rice as a complementary approach for diabetes mellitus management, paving the way for future dietary interventions.
References
2. Aggarwal, B., Sharma, P., & Lamba, H. S. (2020). Gas Chromatography-Mass Spectrometry Characterization of Bioactive Compounds from Ziziphus nummularia (Burm. F.) Stem Bark with Promising In Vitro Antiplasmodial Activity. Journal of Pharmacy & Bioallied Sciences, 12(1), 42–47. https://doi.org/10.4103/jpbs.JPBS_41_18
3. Alam, M. A., Subhan, N., Hossain, H., Hossain, M., Reza, H. M., Rahman, M. M., & Ullah, M. O. (2016). Hydroxycinnamic acid derivatives: a potential class of natural compounds for the management of lipid metabolism and obesity. In Nutrition & metabolism (Vol. 13, p. 27). https://doi.org/10.1186/s12986-016-0080-3
4. Bahadoran, Z., Mirmiran, P., Delshad, H., & Azizi, F. (2014). White rice consumption is a risk factor for metabolic syndrome in Tehrani adults: a prospective approach in Tehran Lipid and Glucose Study. Archives of Iranian Medicine, 17(6), 435–440.
5. Bhatia, A., Singh, B., Arora, R., & Arora, S. (2019). In vitro evaluation of the α-glucosidase inhibitory potential of methanolic extracts of traditionally used antidiabetic plants. BMC Complementary and Alternative Medicine, 19(1), 74. https://safeaccess.unboundmedicine.com/medline/citation/30909900/In_vitro_evaluation_of_the_α_glucosidase_inhibitory_potential_of_methanolic_extracts_of_traditionally_used_antidiabetic_plants_
6. de Melo, T. S., Lima, P. R., Carvalho, K. M. M. B., Fontenele, T. M., Solon, F. R. N., Tomé, A. R., de Lemos, T. L. G., da Cruz Fonseca, S. G., Santos, F. A., Rao, V. S., & de Queiroz, M. G. R. (2017). Ferulic acid lowers body weight and visceral fat accumulation via modulation of enzymatic, hormonal and inflammatory changes in a mouse model of high-fat diet-induced obesity. In Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas (Vol. 50, Issue 1, p. e5630). https://doi.org/10.1590/1414-431x20165630
7. Dharshini K, C. P., Raj, D. S., & Sankaran, U. (2021). Rice and diabetes-a comprehensive review. Romanian Journal of Diabetes Nutrition & Metabolic Diseases, 28(4).
8. Fathalipour, M., Fathalipour, H., Safa, O., Nowrouzi-Sohrabi, P., Mirkhani, H., & Hassanipour, S. (2020). The Therapeutic Role of Carotenoids in Diabetic Retinopathy: A Systematic Review. Diabetes, Metabolic Syndrome and Obesity : Targets and Therapy, 13, 2347–2358. https://doi.org/10.2147/DMSO.S255783
9. Fukagawa, N. K., & Ziska, L. H. (2019). Rice: Importance for Global Nutrition. Journal of Nutritional Science and Vitaminology, 65(Supplement), S2–S3. https://doi.org/10.3177/jnsv.65.S2
10. Goufo, P., & Trindade, H. (2014). Rice antioxidants: phenolic acids, flavonoids, anthocyanins, proanthocyanidins, tocopherols, tocotrienols, γ-oryzanol, and phytic acid. Food Science & Nutrition, 2(2), 75–104. https://doi.org/10.1002/fsn3.86
11. Hanhineva, K., Törrönen, R., Bondia-Pons, I., Pekkinen, J., Kolehmainen, M., Mykkänen, H., & Poutanen, K. (2010). Impact of dietary polyphenols on carbohydrate metabolism. International Journal of Molecular Sciences, 11(4), 1365–1402. https://doi.org/10.3390/ijms11041365
12. He, Y., Sun, M. M., Zhang, G. G., Yang, J., Chen, K. S., Xu, W. W., & Li, B. (2021). Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduction and Targeted Therapy, 6(1). https://doi.org/10.1038/s41392-021-00828-5
13. Hu, E. A., Pan, A., Malik, V., & Sun, Q. (2012). White rice consumption and risk of type 2 diabetes: meta-analysis and systematic review. BMJ (Clinical Research Ed.), 344, e1454. https://doi.org/10.1136/bmj.e1454
14. Huang, L., Lin, J., Aris, I. M., Yang, G., Chen, W.-Q., & Li, L.-J. (2019). Circulating Saturated Fatty Acids and Incident Type 2 Diabetes: A Systematic Review and Meta-Analysis. Nutrients, 11(5). https://doi.org/10.3390/nu11050998
15. Jemaa, H. Ben, Jemia, A. Ben, Khlifi, S., Ahmed, H. Ben, Slama, F. Ben, Benzarti, A., Elati, J., & Aouidet, A. (2017). ANTIOXIDANT ACTIVITY AND A-AMYLASE INHIBITORY POTENTIAL OF ROSA CANINA L. African Journal of Traditional, Complementary, and Alternative Medicines, 14, 1–8.
16. Kajaria, D., Ranjana, Tripathi, J., Tripathi, Y. B., & Tiwari, S. (2013). In-vitro α amylase and glycosidase inhibitory effect of ethanolic extract of antiasthmatic drug - Shirishadi. Journal of Advanced Pharmaceutical Technology & Research, 4(4), 206–209. https://doi.org/10.4103/2231-4040.121415
17. Mackon, E., Jeazet Dongho Epse Mackon, G. C., Ma, Y., Haneef Kashif, M., Ali, N., Usman, B., & Liu, P. (2021). Recent Insights into Anthocyanin Pigmentation, Synthesis, Trafficking, and Regulatory Mechanisms in Rice (Oryza sativa L.) Caryopsis. Biomolecules, 11(3). https://doi.org/10.3390/biom11030394
18. Nasim, N., Sandeep, I. S., & Mohanty, S. (2022). Plant-derived natural products for drug discovery: current approaches and prospects. The Nucleus : An International Journal of Cytology and Allied Topics, 65(3), 399–411. https://doi.org/10.1007/s13237-022-00405-3
19. Nayar, S., & Madhu, S. V. (2020). Glycemic Index of Wheat and Rice are Similar When Consumed as Part of a North Indian Mixed Meal. Indian Journal of Endocrinology and Metabolism, 24(3), 251–255. https://doi.org/10.4103/ijem.IJEM_4_20
20. Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative Medicine and Cellular Longevity, 2(5), 270–278. https://doi.org/10.4161/OXIM.2.5.9498
21. Pradhan, S., & Dubey, R. C. (2021). GC-MS analysis and molecular docking of bioactive compounds of Camellia sinensis and Camellia assamica. Archives of Microbiology, 203(5), 2501–2510. https://doi.org/10.1007/s00203-021-02209-6
22. Rahman, M. M., Rahaman, M. S., Islam, M. R., Rahman, F., Mithi, F. M., Alqahtani, T., Almikhlafi, M. A., Alghamdi, S. Q., Alruwaili, A. S., Hossain, M. S., Ahmed, M., Das, R., Emran, T. Bin, & Uddin, M. S. (2021). Role of Phenolic Compounds in Human Disease: Current Knowledge and Future Prospects. Molecules (Basel, Switzerland), 27(1). https://doi.org/10.3390/molecules27010233
23. Rathna Priya, T. S., Eliazer Nelson, A. R. L., Ravichandran, K., & Antony, U. (2019). Nutritional and functional properties of coloured rice varieties of South India: A review. Journal of Ethnic Foods, 6(1), 1–11. https://doi.org/10.1186/s42779-019-0017-3
24. Rizvi, S., Afzal, S., Khan, K., Ati, H., Rao, H., Ghalloo, B. A., Shahzad, M., Khan, D., Esatbeyoglu, T., & Korma, S. (2023). Chemical Characterisation, Antidiabetic, Antibacterial, and In Silico Studies for Different Extracts of Haloxylon stocksii (Boiss.) Benth: A Promising Halophyte. Molecules. https://doi.org/10.3390/molecules28093847
25. Saeedi, P., Petersohn, I., Salpea, P., Malanda, B., Karuranga, S., Unwin, N., Colagiuri, S., Guariguata, L., Motala, A. A., Ogurtsova, K., Shaw, J. E., Bright, D., & Williams, R. (2019). Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9 th edition. Diabetes Research and Clinical Practice, 157. https://doi.org/10.1016/J.DIABRES.2019.107843
26. Saikia, S., Dutta, H., Saikia, D., & Mahanta, C. L. (2012). Quality characterisation and estimation of phytochemicals content and antioxidant capacity of aromatic pigmented and non-pigmented rice varieties. Food Research International, 46(1), 334–340. https://doi.org/https://doi.org/10.1016/j.foodres.2011.12.021
27. Udhaya Nandhini, D., Venkatesan, S., Senthilraja, K., Janaki, P., Prabha, B., Sangamithra, S., Vaishnavi, S. J., Meena, S., Balakrishnan, N., Raveendran, M., Geethalakshmi, V., & Somasundaram, E. (2023). Metabolomic analysis for disclosing nutritional and therapeutic prospective of traditional rice cultivars of Cauvery deltaic region, India. Frontiers in Nutrition, 10, 1254624. https://doi.org/10.3389/fnut.2023.1254624
28. Ullah, A., Munir, S., Badshah, S. L., Khan, N., Ghani, L., Poulson, B. G., Emwas, A.-H., & Jaremko, M. (2020). Important Flavonoids and Their Role as a Therapeutic Agent. Molecules (Basel, Switzerland), 25(22). https://doi.org/10.3390/molecules25225243
29. Vessal, M., Hemmati, M., & Vasei, M. (2003). Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comparative Biochemistry and Physiology. Toxicology & Pharmacology : CBP, 135C(3), 357–364. https://doi.org/10.1016/s1532-0456(03)00140-6
30. Wade, R. C., & Goodford, P. J. (1989). The role of hydrogen-bonds in drug binding. Progress in Clinical and Biological Research, 289, 433–444.
31. Yue, Q., Song, Y., Liu, Z., Zhang, L., Yang, L., & Li, J. (2022). Receptor for Advanced Glycation End Products (RAGE): A Pivotal Hub in Immune Diseases. Molecules (Basel, Switzerland), 27(15). https://doi.org/10.3390/molecules27154922