A Comprehensive Review of Energy-Efficient Circuit Design Techniques for Internet of Things (IoT) Devices
Abstract
The Internet of Things (IoT) is expanding at a rapid pace, which has increased demand for devices that can function under strict power and energy limits. To satisfy the demands of long-term operation, energy-efficient circuit design has emerged as a crucial field of study, particularly for battery-powered and energy-harvesting Internet of Things devices. This study provides an extensive overview of the most recent developments in energy-efficient circuit design methods for Internet of Things devices. It examines several low-power design techniques, such as energy harvesting technologies, dynamic voltage and frequency scaling (DVFS), sub-threshold logic, and sleep mode techniques. The study also investigates how ultra-low-power processors, communication modules, and sensors might improve the overall energy efficiency of Internet of Things systems. Key challenges such as maintaining performance under limited energy budgets, minimizing leakage power, and optimizing trade-offs between power, performance, and area are discussed. The review also highlights recent trends and future research directions aimed at further reducing energy consumption while ensuring reliable and scalable IoT deployments.
References
Zhu, M., Yi, Z., Yang, B., & Lee, C. (2021). Making use of nanoenergy from human–nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today, 36, 101016. https://doi.org/10.1016/j.nantod.2020.101016
Shi, Q., Sun, Z., Zhang, Z., & Lee, C. (2021). Triboelectric nanogenerators and hybridized systems for enabling next-generation IoT applications. Research, 2021, 6849171. https://doi.org/10.34133/2021/6849171
Zhao, H., Xu, M., Shu, M., An, J., Ding, W., Liu, X., Wang, S., Zhao, C., Yu, H., Wang, H., & Wang, Z. L. (2022). Underwater wireless communication via TENG-generated Maxwell’s displacement current. Nature Communications, 13, 3325. https://doi.org/10.1038/s41467-022-31066-9
Jin, T., Sun, Z., Li, L., Zhang, Q., Zhu, M., Zhang, Z., Yuan, G., Chen, T., Tian, Y., & Hou, X. (2020). Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nature Communications, 11, 5381. https://doi.org/10.1038/s41467-020-19141-4
Askari, H., Khajepour, A., Khamesee, M. B., & Wang, Z. L. (2019). Embedded self-powered sensing systems for smart vehicles and intelligent transportation. Nano Energy, 66, 104103. https://doi.org/10.1016/j.nanoen.2019.104103
Liu, L., Guo, X., & Lee, C. (2021). Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy, 88, 106304. https://doi.org/10.1016/j.nanoen.2021.106304
Dan, X., Cao, R., Cao, X., Wang, Y., Xiong, Y., Han, J., Luo, L., Yang, J., Xu, N., & Sun, J. (2023). Whirligig-inspired hybrid nanogenerator for multi-strategy energy harvesting. Advanced Fiber Materials, 5, 362–376. https://doi.org/10.1007/s42765-022-00171-5
Nozariasbmarz, A., Collins, H., Dsouza, K., Polash, M. H., Hosseini, M., Hyland, M., Liu, J., Malhotra, A., Ortiz, F. M., & Mohaddes, F. (2020). Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Applied Energy, 258, 114069. https://doi.org/10.1016/j.apenergy.2019.114069
Li, Q., Li, S., Pisignano, D., Persano, L., Yang, Y., & Su, Y. (2021). On the evaluation of output voltages for quantifying the performance of pyroelectric energy harvesters. Nano Energy, 86, 106045. https://doi.org/10.1016/j.nanoen.2021.106045
Roldán-Carmona, C., Malinkiewicz, O., Soriano, A., Mínguez Espallargas, G., Garcia, A., Reinecke, P., Kroyer, T., Dar, M. I., Nazeeruddin, M. K., & Bolink, H. J. (2014). Flexible high efficiency perovskite solar cells. Energy & Environmental Science, 7(3), 994. https://doi.org/10.1039/c3ee43772b
Zhang, X., Grajal, J., Vazquez-Roy, J. L., Radhakrishna, U., Wang, X., Chern, W., Zhou, L., Lin, Y., Shen, P. C., Ji, X., et al. (2019). Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature, 566(7742), 368–372. https://doi.org/10.1038/s41586-019-0947-9
Shafique, K., Khawaja, B. A., Sabir, F., Qazi, S., & Mustaqim, M. (2020). Internet of Things (IoT) for next-generation smart systems: A review of current challenges, future trends, and prospects for emerging 5G-IoT scenarios. IEEE Access, 8, 23022–23040. https://doi.org/10.1109/ACCESS.2020.2968045
Bai, Y., Jantunen, H., & Juuti, J. (2018). Energy harvesting research: The road from single source to multisource. Advanced Materials, 30(10), 1707271. https://doi.org/10.1002/adma.201707271
Liu, H., Zhong, J., Lee, C., Lee, S.-W., & Lin, L. (2018). A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 5(4), 041306. https://doi.org/10.1063/1.5074184
Wu, C., Wang, A. C., Ding, W., Guo, H., & Wang, Z. L. (2019). Triboelectric nanogenerator: A foundation of the energy for the new era. Advanced Energy Materials, 9(1), 1802906. https://doi.org/10.1002/aenm.201802906
Zhou, L., Xu, W., Wang, C., & Chen, H. H. (2023). RIS-enabled UAV cognitive radio networks: Trajectory design and resource allocation. Information, 14(75). https://doi.org/10.3390/info14020075
Kalafatidis, S., Demiroglou, V., Mamatas, L., & Tsaoussidis, V. (2022). Experimenting with an SDN-based NDN deployment over wireless mesh networks. In Proceedings of the IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), New York, NY, USA, 2–5 May 2022. https://doi.org/10.1109/INFOCOMWKSHPS54753.2022
Baddeley, M., Nejabati, R., Oikonomou, G., Sooriyabandara, M., & Simeonidou, D. (2018). Evolving SDN for low-power IoT networks. In Proceedings of the 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), Montreal, QC, Canada, 25–29 June 2018, pp. 71–79. https://doi.org/10.1109/NETSOFT.2018.8460134
Mamatas, L., Demiroglou, V., Kalafatidis, S., Skaperas, S., & Tsaoussidis, V. (2022). Protocol-adaptive strategies for wireless mesh smart city networks. IEEE Network. https://doi.org/10.1109/MNET.2022.9877394
Wang, D., Zhong, D., & Souri, A. (2021). Energy management solutions in the Internet of Things applications: Technical analysis and new research directions. Cognitive Systems Research, 67, 33–49. https://doi.org/10.1016/j.cogsys.2020.09.002
Pramudhita, A. N., Asmara, R. A., Siradjuddin, I., & Rohadi, E. (2018). Internet of things integration in smart grid. In Proceedings of the 2018 International Conference on Applied Science and Technology (pp. 718–722), Manado, Indonesia.
Hossein Motlagh, N., Mohammadrezaei, M., Hunt, J., & Zakeri, B. (2020). Internet of things (IoT) and the energy sector. Energies, 13, 494. https://doi.org/10.3390/en13020494
Yang, Q. (2019). Internet of things application in smart grid: A brief overview of challenges, opportunities, and future trends. In Smart Power Distribution Systems (pp. 267–283). Academic Press, Cambridge, MA, USA.
Alavikia, Z., & Shabro, M. (2022). A comprehensive layered approach for implementing internet of things-enabled smart grid: A survey. Digital Communications and Networks, 8, 388–410. https://doi.org/10.1016/j.dcan.2021.10.008
Ahmad, T., & Zhang, D. (2021). Using the internet of things in smart energy systems and networks. Sustainable Cities and Society, 68, 102783. https://doi.org/10.1016/j.scs.2021.102783
Parvin, K., Hannan, M. A., Mun, L. H., Hossain Lipu, M. S., Abdolrasol, M. G. M., Ker, P. J., Muttaqi, K. M., & Dong, Z. Y. (2022). The future energy internet for utility energy service and demand-side management in smart grid: Current practices, challenges, and future directions. Sustainable Energy Technologies and Assessments, 53, 102648. https://doi.org/10.1016/j.seta.2022.102648
Mao, W., Zhao, Z., Chang, Z., Min, G., & Gao, W. (2021). Energy-efficient industrial Internet of things: Overview and open issues. IEEE Transactions on Industrial Informatics, 17, 7225–7237. https://doi.org/10.1109/TII.2021.3057983
Goudarzi, A., Ghayoor, F., Waseem, M., Fahad, S., & Traore, I. (2022). A survey on IoT-enabled smart grids: Emerging, applications, challenges, and outlook. Energies, 15, 6984. https://doi.org/10.3390/en15196984
da Silva, T. B., Chaib, R. P. S., Arismar, C. S., da Rosa Righi, R., & Alberti, A. M. (2022). Toward future Internet of Things experimentation and evaluation. IEEE Internet of Things Journal, 9(10), 8469–8484. https://doi.org/10.1109/JIOT.2021.3119214
Bellini, P., Nesi, P., & Pantaleo, G. (2022). IoT-enabled smart cities: A review of concepts, frameworks, and key technologies. Applied Sciences, 12(4), 1607. https://doi.org/10.3390/app12041607