A Comprehensive Review of Energy-Efficient Circuit Design Techniques for Internet of Things (IoT) Devices

  • Prakash kumar H R
  • Halaswamy B M
Keywords: Internet of Things (IoT), Dynamic Voltage and Frequency Scaling (DVFS)

Abstract

The Internet of Things (IoT) is expanding at a rapid pace, which has increased demand for devices that can function under strict power and energy limits. To satisfy the demands of long-term operation, energy-efficient circuit design has emerged as a crucial field of study, particularly for battery-powered and energy-harvesting Internet of Things devices. This study provides an extensive overview of the most recent developments in energy-efficient circuit design methods for Internet of Things devices. It examines several low-power design techniques, such as energy harvesting technologies, dynamic voltage and frequency scaling (DVFS), sub-threshold logic, and sleep mode techniques. The study also investigates how ultra-low-power processors, communication modules, and sensors might improve the overall energy efficiency of Internet of Things systems. Key challenges such as maintaining performance under limited energy budgets, minimizing leakage power, and optimizing trade-offs between power, performance, and area are discussed. The review also highlights recent trends and future research directions aimed at further reducing energy consumption while ensuring reliable and scalable IoT deployments.

Author Biographies

Prakash kumar H R

Senior scale lecturer, Department of Electronics and communication, Government polytechnic Hosadurga

Halaswamy B M

Senior Scale Lecturer, Department of Electronics and Communication Engineering, Government Polytechnic Chitradurga

References

Zhu, M., Yi, Z., Yang, B., & Lee, C. (2021). Making use of nanoenergy from human–nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today, 36, 101016. https://doi.org/10.1016/j.nantod.2020.101016

Shi, Q., Sun, Z., Zhang, Z., & Lee, C. (2021). Triboelectric nanogenerators and hybridized systems for enabling next-generation IoT applications. Research, 2021, 6849171. https://doi.org/10.34133/2021/6849171

Zhao, H., Xu, M., Shu, M., An, J., Ding, W., Liu, X., Wang, S., Zhao, C., Yu, H., Wang, H., & Wang, Z. L. (2022). Underwater wireless communication via TENG-generated Maxwell’s displacement current. Nature Communications, 13, 3325. https://doi.org/10.1038/s41467-022-31066-9

Jin, T., Sun, Z., Li, L., Zhang, Q., Zhu, M., Zhang, Z., Yuan, G., Chen, T., Tian, Y., & Hou, X. (2020). Triboelectric nanogenerator sensors for soft robotics aiming at digital twin applications. Nature Communications, 11, 5381. https://doi.org/10.1038/s41467-020-19141-4

Askari, H., Khajepour, A., Khamesee, M. B., & Wang, Z. L. (2019). Embedded self-powered sensing systems for smart vehicles and intelligent transportation. Nano Energy, 66, 104103. https://doi.org/10.1016/j.nanoen.2019.104103

Liu, L., Guo, X., & Lee, C. (2021). Promoting smart cities into the 5G era with multi-field Internet of Things (IoT) applications powered with advanced mechanical energy harvesters. Nano Energy, 88, 106304. https://doi.org/10.1016/j.nanoen.2021.106304

Dan, X., Cao, R., Cao, X., Wang, Y., Xiong, Y., Han, J., Luo, L., Yang, J., Xu, N., & Sun, J. (2023). Whirligig-inspired hybrid nanogenerator for multi-strategy energy harvesting. Advanced Fiber Materials, 5, 362–376. https://doi.org/10.1007/s42765-022-00171-5

Nozariasbmarz, A., Collins, H., Dsouza, K., Polash, M. H., Hosseini, M., Hyland, M., Liu, J., Malhotra, A., Ortiz, F. M., & Mohaddes, F. (2020). Review of wearable thermoelectric energy harvesting: From body temperature to electronic systems. Applied Energy, 258, 114069. https://doi.org/10.1016/j.apenergy.2019.114069

Li, Q., Li, S., Pisignano, D., Persano, L., Yang, Y., & Su, Y. (2021). On the evaluation of output voltages for quantifying the performance of pyroelectric energy harvesters. Nano Energy, 86, 106045. https://doi.org/10.1016/j.nanoen.2021.106045

Roldán-Carmona, C., Malinkiewicz, O., Soriano, A., Mínguez Espallargas, G., Garcia, A., Reinecke, P., Kroyer, T., Dar, M. I., Nazeeruddin, M. K., & Bolink, H. J. (2014). Flexible high efficiency perovskite solar cells. Energy & Environmental Science, 7(3), 994. https://doi.org/10.1039/c3ee43772b

Zhang, X., Grajal, J., Vazquez-Roy, J. L., Radhakrishna, U., Wang, X., Chern, W., Zhou, L., Lin, Y., Shen, P. C., Ji, X., et al. (2019). Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature, 566(7742), 368–372. https://doi.org/10.1038/s41586-019-0947-9

Shafique, K., Khawaja, B. A., Sabir, F., Qazi, S., & Mustaqim, M. (2020). Internet of Things (IoT) for next-generation smart systems: A review of current challenges, future trends, and prospects for emerging 5G-IoT scenarios. IEEE Access, 8, 23022–23040. https://doi.org/10.1109/ACCESS.2020.2968045

Bai, Y., Jantunen, H., & Juuti, J. (2018). Energy harvesting research: The road from single source to multisource. Advanced Materials, 30(10), 1707271. https://doi.org/10.1002/adma.201707271

Liu, H., Zhong, J., Lee, C., Lee, S.-W., & Lin, L. (2018). A comprehensive review on piezoelectric energy harvesting technology: Materials, mechanisms, and applications. Applied Physics Reviews, 5(4), 041306. https://doi.org/10.1063/1.5074184

Wu, C., Wang, A. C., Ding, W., Guo, H., & Wang, Z. L. (2019). Triboelectric nanogenerator: A foundation of the energy for the new era. Advanced Energy Materials, 9(1), 1802906. https://doi.org/10.1002/aenm.201802906

Zhou, L., Xu, W., Wang, C., & Chen, H. H. (2023). RIS-enabled UAV cognitive radio networks: Trajectory design and resource allocation. Information, 14(75). https://doi.org/10.3390/info14020075

Kalafatidis, S., Demiroglou, V., Mamatas, L., & Tsaoussidis, V. (2022). Experimenting with an SDN-based NDN deployment over wireless mesh networks. In Proceedings of the IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), New York, NY, USA, 2–5 May 2022. https://doi.org/10.1109/INFOCOMWKSHPS54753.2022

Baddeley, M., Nejabati, R., Oikonomou, G., Sooriyabandara, M., & Simeonidou, D. (2018). Evolving SDN for low-power IoT networks. In Proceedings of the 2018 4th IEEE Conference on Network Softwarization and Workshops (NetSoft), Montreal, QC, Canada, 25–29 June 2018, pp. 71–79. https://doi.org/10.1109/NETSOFT.2018.8460134

Mamatas, L., Demiroglou, V., Kalafatidis, S., Skaperas, S., & Tsaoussidis, V. (2022). Protocol-adaptive strategies for wireless mesh smart city networks. IEEE Network. https://doi.org/10.1109/MNET.2022.9877394

Wang, D., Zhong, D., & Souri, A. (2021). Energy management solutions in the Internet of Things applications: Technical analysis and new research directions. Cognitive Systems Research, 67, 33–49. https://doi.org/10.1016/j.cogsys.2020.09.002

Pramudhita, A. N., Asmara, R. A., Siradjuddin, I., & Rohadi, E. (2018). Internet of things integration in smart grid. In Proceedings of the 2018 International Conference on Applied Science and Technology (pp. 718–722), Manado, Indonesia.

Hossein Motlagh, N., Mohammadrezaei, M., Hunt, J., & Zakeri, B. (2020). Internet of things (IoT) and the energy sector. Energies, 13, 494. https://doi.org/10.3390/en13020494

Yang, Q. (2019). Internet of things application in smart grid: A brief overview of challenges, opportunities, and future trends. In Smart Power Distribution Systems (pp. 267–283). Academic Press, Cambridge, MA, USA.

Alavikia, Z., & Shabro, M. (2022). A comprehensive layered approach for implementing internet of things-enabled smart grid: A survey. Digital Communications and Networks, 8, 388–410. https://doi.org/10.1016/j.dcan.2021.10.008

Ahmad, T., & Zhang, D. (2021). Using the internet of things in smart energy systems and networks. Sustainable Cities and Society, 68, 102783. https://doi.org/10.1016/j.scs.2021.102783

Parvin, K., Hannan, M. A., Mun, L. H., Hossain Lipu, M. S., Abdolrasol, M. G. M., Ker, P. J., Muttaqi, K. M., & Dong, Z. Y. (2022). The future energy internet for utility energy service and demand-side management in smart grid: Current practices, challenges, and future directions. Sustainable Energy Technologies and Assessments, 53, 102648. https://doi.org/10.1016/j.seta.2022.102648

Mao, W., Zhao, Z., Chang, Z., Min, G., & Gao, W. (2021). Energy-efficient industrial Internet of things: Overview and open issues. IEEE Transactions on Industrial Informatics, 17, 7225–7237. https://doi.org/10.1109/TII.2021.3057983

Goudarzi, A., Ghayoor, F., Waseem, M., Fahad, S., & Traore, I. (2022). A survey on IoT-enabled smart grids: Emerging, applications, challenges, and outlook. Energies, 15, 6984. https://doi.org/10.3390/en15196984

da Silva, T. B., Chaib, R. P. S., Arismar, C. S., da Rosa Righi, R., & Alberti, A. M. (2022). Toward future Internet of Things experimentation and evaluation. IEEE Internet of Things Journal, 9(10), 8469–8484. https://doi.org/10.1109/JIOT.2021.3119214

Bellini, P., Nesi, P., & Pantaleo, G. (2022). IoT-enabled smart cities: A review of concepts, frameworks, and key technologies. Applied Sciences, 12(4), 1607. https://doi.org/10.3390/app12041607

Published
2023-12-27
How to Cite
Prakash kumar H R, & Halaswamy B M. (2023). A Comprehensive Review of Energy-Efficient Circuit Design Techniques for Internet of Things (IoT) Devices . Revista Electronica De Veterinaria, 24(4), 410-417. https://doi.org/10.69980/redvet.v24i4.983
Section
Articles