528Hz: The Sound Of Tranquillity And Its Effect On Anxiety
Abstract
Sound healing, based on music therapy, explores the therapeutic potential of specific frequencies for anxiety. The Solfeggio frequency of 528 Hz has gained attention for its ability to resonate with the body's natural frequencies, promoting relaxation, reducing stress, and enhancing emotional well-being.
This study explores the potential of pure 528 Hz sound to reduce state anxiety. 48 subjects were randomly assigned to either an experimental group, which received a 3-minute exposure to 528 Hz music, or a control group, which completed a neutral reading task. State anxiety levels were measured using the STAI, pre and post intervention. Data analysis included paired-sample t-tests and a two-way repeated measures ANOVA. Results showed a significant drop in level of anxiety among experimental group (p = 0.022). Additionally, paired-sample t-tests confirmed a decrease in state anxiety scores within the experimental group (p = 0.006).
These findings provide empirical evidence suggesting the anxiolytic properties of 528 Hz. This study offers preliminary evidence that 528 Hz sound exposure may effectively reduce state anxiety. Future research should elucidate the mechanisms and examine the effectiveness of this approach in broader contexts. This research contributes to the exploration of sound frequencies as a potential non-invasive intervention for anxiety management.
References
2. Anxiety. (n.d.). https://www.apa.org. https://www.apa.org/topics/anxiety
3. Anxiety disorders. (n.d.). National Institute of Mental Health (NIMH). https: //www.nimh.nih.gov /health/topics/anxiety-disorders
4. Baakek, Y. N. E. H., & Debbal, S. M. (2021). Digital drugs (binaural beats): how can it affect the brain/their impact on the brain. Journal of Medical Engineering & Technology, 45(7), 546–551. https: //doi.org /10.1080/03091902.2021.1936236
5. Babayi, T., & Riazi, G. H. (2017). The Effects of 528 Hz Sound Wave to Reduce Cell Death in Human Astrocyte Primary Cell Culture Treated with Ethanol. Journal of Addiction Research and Therapy, 08(04). https://doi.org/10.4172/2155-6105.1000335
6. Bartel, L., & Mosabbir, A. (2021). Possible mechanisms for the effects of sound vibration on human health. Healthcare (Basel), 9(5), 597. https://doi.org/10.3390/healthcare9050597
7. Beheshti, M. T. H., Emkani, M., Jebeli, M. B., Tajpoor, A., Chahack, A. F., Yarahmadi, G., Piramoon, H., Khoshehsahi, S., & Zobeidi, N. (2019). The effect of sound with different frequencies on men and women noise annoyance. Journal of Research & Health, 9(4), 355–362. https://doi.org/10.29252/jrh.9.4.355
8. Beri, K. (2018). A future perspective for regenerative medicine: understanding the concept of vibrational medicine. Future Science OA, 4(3), FSO274. https://doi.org/10.4155/fsoa-2017-0097
9. Campbell, E. M. (2019). Vibroacoustic treatment and self-care for managing the chronic pain experience: An operational model. JYU Dissertations. https://jyx.jyu.fi/handle/123456789/64286
10. Charcot, J. (2011). Vibratory Therapeutics.-The application of rapid and continuous vibrations to the treatment of certain diseases of the nervous system. The Journal of Nervous and Mental Disease, 199(11), 821–827. https://doi.org/10.1097/nmd.0b013e31823899bc
11. Clements-Cortés, A., Ahonen, H., Evans, M. A., Freedman, M., & Bartel, L. (2016). Short-Term effects of rhythmic sensory stimulation in Alzheimer’s Disease: an exploratory pilot study. Journal of Alzheimer’s Disease, 52(2), 651–660. https://doi.org/10.3233/jad-160081
12. Daly, I., Malik, A., Hwang, F., Roesch, E. B., Weaver, J., Kirke, A., Williams, D., Miranda, E. R., & Nasuto, S. J. (2014). Neural correlates of emotional responses to music: An EEG study. Neuroscience Letters, 573, 52–57. https://doi.org/10.1016/j.neulet.2014.05.003
13. Daylari, T. B., Riazi, G., Pooyan, S., Fathi, E., & Katouli, F. H. (2018). Influence of various intensities of 528 Hz sound-wave in production of testosterone in rat’s brain and analysis of behavioral changes. Genes & Genomics, 41(2), 201–211. https://doi.org/10.1007/s13258-018-0753-6
14. Dependent T-Test in SPSS Statistics - The procedure for running the test, generating the output and understanding the output using a relevant example | Laerd Statistics. (n.d.). https://statistics.laerd.com/spss-tutorials/dependent-t-test-using-spss-statistics.php
15. Dunkel, J. (2018). Rolling sound waves. Nature Materials, 17(9), 759–760. https://doi.org/10.1038/s41563-018-0155-9
16. Egmond, R. (2004). Emotional experience of Frequency Modulated sounds: Implications for the design of alarm sounds. https://www.semanticscholar.org/paper/Emotional-experience-of-Frequency-Modulated-sounds%3A-Egmond /32c409370c4431c7cc9a70824580752d2a7a7cb6
17. Engel, G. L. (1977). The need for a new medical model: a challenge for biomedicine. Science (New York, N.Y.), 196(4286), 129–136. https://doi.org/10.1126/science.847460
18. Explorer of the Brain, Bodymind & Beyond – Candace Pert, PhD. (2023, November 9). Candace Pert, PhD. http://candacepert.com/?_ga=2.20536956.579992778.1705123482-174686485.1705123481
19. Fein, E. C. (2022, June 16). Section 6.3 Repeated Measures ANOVA Assumptions, Interpretation, and Write up. Pressbooks.https://usq.pressbooks.pub/statisticsforresearchstudents/chapter/repeated-measures-anova-ssumptions/
20. Goetz, C. G. (2009). Jean-Martin Charcot and his vibratory chair for Parkinson disease. Neurology, 73(6), 475–478. https://doi.org/10.1212/wnl.0b013e3181b1640b
21. Hart, R. C., & McMahon, C. (2006). Mood state and psychological adjustment to pregnancy. Archives of Women’s Mental Health, 9(6), 329–337. https://doi.org/10.1007/s00737-006-0141-0
22. Horowitz, L. G. (2011). The Book of 528: Prosperity Key of Love. Medical Veritas International Incorporated.
23. How to perform a two-way repeated measures ANOVA in SPSS Statistics | Laerd Statistics. (n.d.). https://statistics.laerd.com/spss-tutorials/two-way-repeated-measures-anova-using-spss-statistics.php
24. Hutchins, B. E., & Young, S. G. (2018). State anxiety. In Springer eBooks (pp. 1–3). https://doi.org/10.1007/978-3-319-28099-8_1919-1
25. Iaccarino, H. F., Singer, A. C., Martorell, A. J., Rudenko, A., Gao, F., Gillingham, T. Z., Mathys, H., Seo, J., Kritskiy, O., Abdurrob, F., Adaikkan, C., Canter, R. G., Rueda, R., Brown, E. N., Boyden, E. S., & Tsai, L. (2016). Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature, 540(7632), 230–235. https://doi.org/10.1038/nature20587
26. Ivonin, L., Chang, H., Chen, W., & Rauterberg, M. (2012). Unconscious emotions: quantifying and logging something we are not aware of. Personal and Ubiquitous Computing (Print), 17(4), 663–673. https://doi.org/10.1007/s00779-012-0514-5
27. Joseph, S. (2019). Sound Healing using Solfeggio Frequencies. ResearchGate. https: //www.researchgate.net /publication/333852911_Sound_Healing_using_Solfeggio_Frequencies
28. Julián, L. (2011). Measures of anxiety: State‐Trait Anxiety Inventory (STAI), Beck Anxiety Inventory (BAI), and Hospital Anxiety and Depression Scale‐Anxiety (HADS‐A). Arthritis Care & Research, 63(S11). https://doi.org/10.1002/acr.20561
29. Jung, C. G. (2014). The archetypes and the collective unconscious. In Routledge eBooks. https://doi.org/10.4324/9781315725642
30. Juslin, P., & Laukka, P. (2003). Communication of emotions in vocal expression and music performance: Different channels, same code? Psychological Bulletin, 129(5), 770–814. https://doi.org/10.1037/0033-2909.129.5.770
31. King, L., Almeida, Q. J., & Ahonen, H. (2009). Short-term effects of vibration therapy on motor impairments in Parkinson’s disease. NeuroRehabilitation, 25(4), 297–306. https://doi.org/10.3233/nre-2009-0528
32. Koelsch, S. (2014). Brain correlates of music-evoked emotions. Nature Reviews Neuroscience, 15(3), 170–180. https://doi.org/10.1038/nrn3666
33. Levänen, S., & Hamdorf, D. (2001). Feeling vibrations: enhanced tactile sensitivity in congenitally deaf humans. Neuroscience Letters, 301(1), 75–77. https://doi.org/10.1016/s0304-3940(01)01597-x
34. Lima, C. F., & Castro, S. L. (2011). Speaking to the trained ear: Musical expertise enhances the recognition of emotions in speech prosody. Emotion, 11(5), 1021–1031. https://doi.org/10.1037/a0024521
35. Lolli, S. L., Lewenstein, A. D., Basurto, J., Winnik, S., & Loui, P. (2015). Sound frequency affects speech emotion perception: results from congenital amusia. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.01340
36. Lowe, M., Loveland, K., & Krishna, A. (2018). A Quiet Disquiet: Anxiety and Risk Avoidance due to Nonconscious Auditory Priming. Journal of Consumer Research, 46(1), 159–179. https://doi.org/10.1093/jcr/ucy068
37. Ma, W., & Thompson, W. F. (2015). Human emotions track changes in the acoustic environment. Proceedings of the National Academy of Sciences of the United States of America, 112(47), 14563–14568. https://doi.org/10.1073/pnas.1515087112
38. Mallik, A., & Russo, F. A. (2021). The Effects of Music & Auditory Beat Stimulation on Anxiety: A Randomized Clinical Trial. Semantic Scholar. https://doi.org/10.31234/osf.io/qnhu4
39. Margolin, I., Msw, J. P., & Msw, A. W. (2011). Wellness through a creative lens: mediation and visualization. Journal of Religion & Spirituality in Social Work: Social Thought, 30(3), 234–252. https: //doi.org/10.1080 /15426432.2011.587385
40. Mauchly’s test of sphericity - Why no results? | ResearchGate. (2012, August 7). ResearchGate. https://www.researchgate.net/post/Mauchlys-test-of-sphericity-Why-no-results
41. Mosabbir, A., Almeida, Q. J., & Ahonen, H. (2020). The effects of Long-Term 40-Hz physioacoustic vibrations on motor impairments in Parkinson’s Disease: a Double-Blinded Randomized Control trial. Healthcare (Basel), 8(2), 113. https://doi.org/10.3390/healthcare8020113
42. Murtiani, Hasanah, H., Darvina, Y., & Yulkifli. (2019). Development of interactive teaching materials with scientific approach contains character values in learning matter about sounds wave, light wave, and optical devices in senior high school class XI. Journal of Physics: Conference Series, 1317, 012164. https://doi.org/10.1088/1742-6596 /1317/1/012164
43. National Academy of Sciences. (2015). Psychological testing in the Service of Disability Determination.
44. Özseven, T., Düğenci, M., & Doruk, A. (2016). The effect of age and gender on the acoustic analysis of anxious sound. International Journal of Advanced and Applied Sciences, 3(12), 21–25. https://doi.org/10.21833/ijaas.2016.12.003
45. Pereira, C. (2016). Frequencies of the Buddhist Meditative Chant – Om Mani Padme Hum. International Journal of Science and Research (IJSR), 5(4), 2319–7064. http://scireprints.lu.lv/313/
46. Pert, C. B. (1997). Molecules of emotion: Why You Feel the Way You Feel. Simon and Schuster.
47. Picou, E. M. (2016). Acoustic factors related to emotional responses to sound. https: //www.semanticscholar.org/paper/Acoustic-factors-related-to-emotional-responses-to-Picou/e05d98aac26a6c491aedb035f5ae449c8e2c0570
48. Protopapas, A., & Lieberman, P. (1997). Fundamental frequency of phonation and perceived emotional stress. Journal of the Acoustical Society of America, 101(4), 2267–2277. https://doi.org/10.1121/1.418247
49. Sachs, M. E., Habibi, A., Damásio, A. R., & Kaplan, J. (2018). Decoding the neural signatures of emotions expressed through sound. NeuroImage, 174, 1–10. https://doi.org/10.1016/j.neuroimage.2018.02.058
50. Santos, A. C. D., De Abreu, M. S., De Mello, G. P., Costella, V., Amaral, N. R. D., Zanella, A., Poletto, J., Petersen, E., Kalueff, A. V., & Giacomini, A. C. (2023). Solfeggio-frequency music exposure reverses cognitive and endocrine deficits evoked by a 24-h light exposure in adult zebrafish. Behavioural Brain Research, 450, 114461. https://doi.org/10.1016/j.bbr.2023.114461
51. Snyder, B. (2001). Music and Memory: An Introduction. http://ci.nii.ac.jp/ncid/BA50857291
52. Standing, L., & Stace, G. (1980). The effects of environmental noise on anxiety level. The Journal of General Psychology, 103(2), 263–272. https://doi.org/10.1080/00221309.1980.9921007
53. Steele, R. (2004). The theory and practical application of sounds in therapy. Psychotherapy in Australia, 11(1), 66. http://search.informit.com.au/fullText;dn=546772576404776;res=IELHEA
54. Stroebe, M., & Stroebe, W. (2012). Encyclopedia of Human Behavior (2nd Edition). In Elsevier eBooks. https://www.rug.nl/research/portal/publications/grief-and-bereavement(f82050d2-8e2b-4c62-87fb-89d8af6c4664).html
55. Thompson, W. F., Marin, M. M., & Stewart, L. (2012). Reduced sensitivity to emotional prosody in congenital amusia rekindles the musical protolanguage hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 109(46), 19027–19032. https://doi.org/10.1073/pnas.1210344109
56. Thompson, W. F., Schellenberg, E. G., & Husain, G. (2004). Decoding speech prosody: Do music lessons help? Emotion, 4(1), 46–64. https://doi.org/10.1037/1528-3542.4.1.46
57. Van Steenhuyse, E., & Rhoads, M. (2021). Impact of Vibrational Frequencies on State Mood and Mindfulness. Metropolitan State University of Denver, 3. https://doi.org/10.25261/rowdyscholar_sum_2021_evs
58. Vuong, V., Mosabbir, A., Paneduro, D., Picard, L. M., Faghfoury, H., Evans, M. A., Gordon, A., & Bartel, L. (2020). Effects of rhythmic sensory stimulation on Ehlers–Danlos Syndrome: a pilot study. Pain Research & Management, 2020, 1–10. https://doi.org/10.1155/2020/3586767
59. Waddington, D., Woodcock, J., Peris, E., Condie, J., Sica, G., Moorhouse, A., & Steele, A. (2014). Human response to vibration in residential environments. Journal of the Acoustical Society of America, 135(1), 182–193. https://doi.org/10.1121/1.4836496
60. Whole-body vibration: An effective workout? (2024, January 19). Mayo Clinic. https: //www.mayoclinic.org /healthy-lifestyle/fitness/expert-answers/whole-body-vibration/faq-20057958#:~:text=Advocates%20say%20that%20as%20little,decrease%20the%20stress%20hormone%20cortisol.
61. Wiethoff, S., Wildgruber, D., Kreifelts, B., Becker, H. G. T., Herbert, C., Grodd, W., & Ethofer, T. (2008). Cerebral processing of emotional prosody—influence of acoustic parameters and arousal. NeuroImage, 39(2), 885–893. https://doi.org/10.1016/j.neuroimage.2007.09.028
62. Xia, S., Yan, M., Wu, M., Sheng, Z., Hao, Z., Huang, C., & Yang, W. (2015). Soliton frequency shifts in subwavelength structures. Journal of Optics, 17(5), 055503. https://doi.org/10.1088/2040-8978/17/5/055503