Heat Stress in Dairy Cows: A Comprehensive Examination of Wellbeing, Milk Yield, Sexual Health

  • R Murugan, Pankaj Saraswat, Sanjay Kumar Sinha
Keywords: Temperature Humidity Index (THI), Heat Stress (HS), Cow’s Health, Milk Production

Abstract

The welfare and productivity of cows can be negatively impacted by heat stress (HS), a significant issue in the dairy industry. Cows have limited evaporative cooling capacity, leading to increased respiration rates, reduced feed intake, decreased milk production, and impaired reproductive function. Strategies to reduce HS include providing cool water, air, shade and changing management practices. This study investigated 30 review papers on HS in dairy cows published between 2019 and 2023. This research examines the welfare of dairy cows, focusing on factors such as housing, food, and medical treatments. It explores the relationship between milk production and cow wellbeing and the potential implications for sustainable farming methods. The study also examines the impact of HS on milk production, reproductive health, and herd management. The Temperature Humidity Index (THI) categorizes HS severity, with higher values resulting in lower milk production and reproductive efficiency. The study emphasizes the importance of immediate cooling action to reduce financial losses in the dairy industry. Proactive measures are needed to strengthen dairy farming systems' resistance to climate change, ensuring the righteous optimization of cow health and productivity. The research advocates for a holistic approach to dairy farming that prioritizes cow health, milk production, and sexual health. Preventative measures, such as improving diet, housing, and disease control, are recommended.

References

Khanal, P., Dhakal, R., Khanal, T., Pandey, D., Devkota, N. R., & Nielsen, M. O. (2022). Sustainable livestock production in Nepal: A focus on animal nutrition strategies. Agriculture, 12(5), 679. DOI:https://doi.org/10.3390/agriculture12050679
Ye, Z., Qiu, X., Chen, J., Cammarano, D., Ge, Z., Ruane, A. C., ...& Zhu, Y. (2020). Impacts of 1.5 C and 2.0 C global warming above pre-industrial on potential winter wheat production of China. European Journal of Agronomy, 120, 126149.DOI:https://doi.org/10.1016/j.eja.2020.126149
Sejian, V., Silpa, M. V., Reshma Nair, M. R., Devaraj, C., Krishnan, G., Bagath, M., ...& Bhatta, R. (2021). Heat stress and goat welfare: Adaptation and production considerations. Animals, 11(4), 1021.DOI:https://doi.org/10.3390/ani11041021
Habte, M., Eshetu, M., Maryo, M., Andualem, D., Legesse, A., &Admassu, B. (2021). The influence of weather conditions on body temperature, milk composition, and yields of the free-ranging dromedary camels in Southeastern rangelands of Ethiopia. Cogent Food & Agriculture, 7(1), 1930932. DOI:https://doi.org/10.1080/23311932.2021.1930932
Ebarvia, M. C. M. (2022). How Well Has Environmental and Social Protection Been Ensured for Small Farmers and Fisherfolk?: Sustainable Development of Philippine Agriculture and Fisheries (No. DP 2022-11). Philippine Institute for Development Studies.DOI: https://www.msc.org/what-we-are-doing/oceans-at-risk/overfishing-illegal-and-destructive-fishing
Edwards-Callaway, L. N., Cramer, M. C., Cadaret, C. N., Bigler, E. J., Engle, T. E., Wagner, J. J., & Clark, D. L. (2021). Impacts of shade on cattle wellbeing in the beef supply chain. Journal of Animal Science, 99(2), skaa375.DOI: https://doi.org/10.1093/jas/skaa375
Alhussien, M. N., & Dang, A. K. (2020). Interaction between stress hormones and phagocytic cells and its effect on the health status of dairy cows: A review. Veterinary world, 13(9), 1837. DOI: https://doi.org/10.14202%2Fvetworld.2020.1837-1848
Lovarelli, D., Bacenetti, J., &Guarino, M. (2020). A review on dairy cattle farming: Is precision livestock farming a compromise for environmentally, economically, and socially sustainable production? Journal of Cleaner Production, 262, 121409.DOI: https://doi.org/10.1016/j.jclepro.2020.121409
Most, M. S., & Yates, D. T. (2021). Inflammatory mediation of heat stress-induced growth deficits in livestock and its potential role as a target for nutritional interventions: A review. Animals, 11(12), 3539. DOI: https://doi.org/10.3390/ani11123539
Lundgren Kownacki, K., Gao, C., Kuklane, K., &Wierzbicka, A. (2019). Heat stress in indoor environments of scandinavian urban areas: A literature review. International journal of environmental research and public health, 16(4), 560.DOI: https://doi.org/10.3390/ijerph16040560
Ventura, G., Lorenzi, V., Mazza, F., Clemente, G. A., Iacomino, C., Bertocchi, L., &Fusi, F. (2021). Best farming practices for the welfare of dairy cows, heifers and calves. Animals, 11(9), 2645. DOI: https://doi.org/10.3390/ani11092645
Taylor, L. A., Thawley, C. J., Pertuit, O. R., Dennis, A. J., Carson, I. R., Tang, C., & Johnson, M. A. (2022). Artificial light at night alters diurnal and nocturnal behavior and physiology in green anole lizards. Physiology & Behavior, 257, 113992. DOI: https://doi.org/10.1016/j.physbeh.2022.113992
Sammad, A., Luo, H., Qiu, W., Galindez, J. M., Wang, Y., Guo, G., ...& Wang, Y. (2022). Automated monitoring of seasonal and diurnal variation of rumination behavior: Insights into thermotolerance management of Holstein cows. Biosystems Engineering, 223, 115-128.DOI: https://doi.org/10.1016/j.biosystemseng.2021.12.002
Sun, L. L., Gao, S. T., Wang, K., Xu, J. C., Sanz-Fernandez, M. V., Baumgard, L. H., & Bu, D. P. (2019). Effects of source on bioavailability of selenium, antioxidant status, and performance in lactating dairy cows during oxidative stress-inducing conditions. Journal of dairy science, 102(1), 311-319. DOI: https://doi.org/10.3168/jds.2018-14974
Soufleri, A., Banos, G., Panousis, N., Fletouris, D., Arsenos, G., Kougioumtzis, A., &Valergakis, G. E. (2021). Evaluation of factors affecting colostrum quality and quantity in Holstein dairy cattle. Animals, 11(7), 2005.DOI: https://doi.org/10.3390/ani11072005
Mbuthia, J. M., Mayer, M., &Reinsch, N. (2021). Modeling heat stress effects on dairy cattle milk production in a tropical environment using test-day records and random regression models. Animal, 15(8), 100222. DOI: https://doi.org/10.1016/j.animal.2021.100222
Pulina, G., Tondo, A., Danieli, P. P., Primi, R., Matteo Crovetto, G., Fantini, A., ...&Atzori, A. S. (2020). How to manage cows yielding 20,000 kg of milk: Technical challenges and environmental implications. Italian Journal of Animal Science, 19(1), 865-879. DOI: https://doi.org/10.1080/1828051X.2020.1805370
Beaupied, B. L., Martinez, H., Martenies, S., McConnel, C. S., Pollack, I. B., Giardina, D., ...&Magzamen, S. (2022). Cows as canaries: The effects of ambient air pollution exposure on milk production and somatic cell count in dairy cows. Environmental Research, 207, 112197. DOI: https://www.sciencedirect.com/science/article/pii/S0013935121014985
Min, L., Li, D., Tong, X., Nan, X., Ding, D., Xu, B., & Wang, G. (2019). A review of nutritional strategies for alleviating the detrimental effects of heat stress in dairy cows. International Journal of Biometeorology, 63, 1283-1302.DOI: DOI: https://doi.org/10.1007/s00484-019-01744-8
Park, T., Ma, L., Gao, S., Bu, D., & Yu, Z. (2022). Heat stress impacts the multi-domain ruminal microbiota and some functional features independent of its effect on feed intake in lactating dairy cows. Journal of Animal Science and Biotechnology, 13(1), 1-15. DOI: https://doi.org/10.1186/s40104-022-00717-z
Gupta, S., Sharma, A., Joy, A., Dunshea, F. R., & Chauhan, S. S. (2022). The impact of heat stress on the immune status of dairy cattle and strategies to lessen the negative effects. Animals, 13(1), 107. DOI: https://doi.org/10.3390/ani13010107
Haas, M., Himmelbach, A., &Mascher, M. (2020). The contribution of cis-and trans-acting variants to gene regulation in wild and domesticated barley under cold stress and control conditions. Journal of experimental botany, 71(9), 2573-2584. DOI: https://doi.org/10.1093/jxb/eraa036
Sammad, A., Umer, S., Shi, R., Zhu, H., Zhao, X., & Wang, Y. (2020). Dairy cow reproduction under the influence of heat stress. Journal of animal physiology and nutrition, 104(4), 978-986. DOI: https://doi.org/10.1111/jpn.13257
Roth, Z. (2021). Heat stress reduces maturation and developmental capacity in bovine oocytes. Reproduction, Fertility and Development, 33(2), 66-75. DOI: https://doi.org/10.1071/RD20213
Wachida, N., Dawuda, P. M., Ate, I. U., &Rekwot, P. I. (2021). Impact of environmental heat stress on ovarian function of zebu cows. J. Anim. Health Prod, 10(4), 412-419. DOI:http://dx.doi.org/10.17582/journal.jahp/2022/10.4.412.419
Abduch, N. G., Pires, B. V., Souza, L. L., Vicentini, R. R., Zadra, L. E. F., Fragomeni, B. O., ... &Stafuzza, N. B. (2022). Effect of Thermal Stress on Thermoregulation, Hematological and Hormonal Characteristics of Caracu Beef Cattle. Animals, 12(24), 3473.DOI: https://doi.org/10.3390/ani12243473
McManus, C. M., Faria, D. A., Lucci, C. M., Louvandini, H., Pereira, S. A., &Paiva, S. R. (2020). Heat stress effects on sheep: Are hair sheep more heat resistant? Theriogenology, 155, 157-167. DOI: https://doi.org/10.1016/j.theriogenology.2020.05.047
Khan, A., Khan, M. Z., Umer, S., Khan, I. M., Xu, H., Zhu, H., & Wang, Y. (2020). Cellular and molecular adaptation of bovine granulosa cells and oocytes under heat stress. Animals, 10(1), 110.DOI: https://doi.org/10.3390/ani10010110
Heck, A. L., &Handa, R. J. (2019). Androgens drive sex biases in hypothalamic corticotropin-releasing hormone gene expression after adrenalectomy of mice. Endocrinology, 160(7), 1757-1770. DOI: https://doi.org/10.1210/en.2019-00238
Sui, K. (2023). Investigation of Strategies for Improving Metabolic Health in Postmenopause: Cannabidiol, Bacterial Metabolism of Estrogens, and Dietary Fatty Acids (Doctoral dissertation, Rutgers The State University of New Jersey, School of Graduate Studies). DOI: https://hdl.handle.net/2346/96323
Published
2024-01-01
How to Cite
R Murugan, Pankaj Saraswat, Sanjay Kumar Sinha. (2024). Heat Stress in Dairy Cows: A Comprehensive Examination of Wellbeing, Milk Yield, Sexual Health. Revista Electronica De Veterinaria, 24(3), 522-532. Retrieved from https://www.veterinaria.org/index.php/REDVET/article/view/479
Section
Articles