Edge Harmonic Mean Cordial Labeling of Some Cycle Related Graphs

  • Chandresh Kheni
  • Mohini Desai
Keywords: Edge Harmonic Mean Cordial Labeling, Cycle, Complete Graph, Helm, Wheel.

Abstract

All the graphs considered in this article are simple and undirected. Let  be a simple undirected Graph. A function  is called Edge Harmonic Mean Cordial if the induced function  defined by  or where  are the edges incident with the vertex  which satisfies the condition  and  for any , where  and  denotes the number of vertices and number of edges with label  respectively. A Graph  is called Edge Harmonic Mean Cordial (EHMC) graph if it admits Edge Harmonic Mean Cordial labeling. In this article, we have discussed Edge Harmonic Mean Cordial Labeling of Some Cycle Related Graphs.

Author Biographies

Chandresh Kheni

Research Scholar, Department of Mathematics, Swaminarayan University, Kalol, Gujarat-382725, India

Mohini Desai

Department of Mathematics, Swaminarayan University, Kalol, Gujarat-382725, India

References

Balakrishnan, R., & Ranganathan, K. (2012). A textbook of graph theory. Springer Science & Business Media.
Gallian, J. A. (2024). A dynamic survey of graph labeling. Electronic Journal of combinatorics, 6(26), 4-623.
Gandhi, H., Parejiya, J., Jariya, M. M., & Solanki, R.. (2023). Harmonic Mean Cordial Labeling of One Chord Cn V G. International Journal of Membrane Science and Technology, 10(4), 2449-2456.
Gandhi, H., Parejiya, J., Jariya, M. M., & Solanki, R.. (2024). Harmonic Mean Cordial Labeling of Some Cycle Related Graphs. Educational Administration: Theory and Practice, 30(1), 1180–1188.
Gandhi H., Parejiya J., and Jariya M., (2025), Harmonic Mean Cordial Labeling In The Scenario of Duplicating Graph Elements, TWMS Journal of Applied And Engineering Mathematics, 15(6), pp. 1594-1607.
Gowri, J., & Jayapriya, J. (2021). Hmc Labeling of Certain Types of Graph. Turkish Journal of Computer and Mathematics Education, 12(10), 3913-3915.
Mundadiya, S., Parejiya, J., & Jariya, M. M. (2024). Root cube mean cordial labeling of C_n∨C_m, for n,m∈N. TWMS Journal of Applied And Engineering Mathematics.
Parejiya, J., Lalchandani, P. T., Jani, D. B., & Mundadiya, S. (2023, November). Some remarks on harmonic mean cordial labeling. In AIP Conference Proceedings (Vol. 2963, No. 1, p. 020019). AIP Publishing LLC.
Parejiya, J., Jani, D. B., & Hathi, Y. M. (2024). Harmonic Mean Cordial labeling of some graphs. TWMS Journal of Applied And Engineering Mathematics.
Parejiya, J., Mundadiya, S., Gandhi, H., Solanki, R., & Jariya, M. (2023, November). Root cube mean cordial labeling of K_(1,n)×P_m. In AIP Conference Proceedings (Vol. 2963, No. 1, p. 020020). AIP Publishing LLC.
Published
2024-08-26
How to Cite
Chandresh Kheni, & Mohini Desai. (2024). Edge Harmonic Mean Cordial Labeling of Some Cycle Related Graphs. Revista Electronica De Veterinaria, 25(2), 2196-2209. https://doi.org/10.69980/redvet.v25i2.2151