Sol-Gel Derived Cobalt-Doped Mgo Thin Films On Quartz: A Study On Structure, Morphology And Conductivity

  • Rinka Tuteja
  • Vikram Singh
Keywords: Cobalt-doped MgO, sol-gel method, electrical conductivity, XPS, FTIR, thin films

Abstract

In this study, cobalt-doped magnesium oxide (MgO) thin films were synthesized using the sol-gel method to investigate the structural, morphological, chemical, and electrical properties. The films were calcined at temperatures between 500°C and 600°C to achieve optimal uniformity and doping concentration. Structural analysis using X-ray diffraction (XRD) confirmed the cubic MgO structure, while Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) verified the successful incorporation of cobalt in both Co²⁺ and Co³⁺ oxidation states. Particle size analysis (PSA) and zeta potential measurements indicated a stable colloidal dispersion with an average particle size of 45–55 nm and a zeta potential of +30 mV. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed uniform grain morphology with small grains (~20–30 nm) and smooth surfaces (RMS roughness of 2.5–3 nm). The electrical properties revealed an increase in DC conductivity with higher cobalt doping, with values reaching 3.5 × 10⁻⁴ Ω⁻¹ cm⁻¹ at 5 mol% cobalt. Temperature-dependent conductivity followed an Arrhenius-type behavior, with activation energy values ranging from 0.21 eV to 0.36 eV. These findings demonstrate the potential of cobalt-doped MgO thin films for various electronic and sensing applications.

Author Biographies

Rinka Tuteja

Department of Physics, Om Sterling Global University, Hisar (Haryana)

Vikram Singh

Department of Physics, Om Sterling Global University, Hisar (Haryana)

References

• Ali, Z., Khan, M. S., & Ahmed, F. (2023). Enhanced catalytic and magnetic properties of Cobalt-doped MgO thin films for sensor applications. Materials Chemistry and Physics, 284, 126340. https://doi.org/10.1016/j.matchemphys.2022.126340
• Alvarez, R., Martínez, A., & García, E. (2022). Electrical properties of MgO thin films with dopants for semiconductor applications. Journal of Applied Physics, 132(3), 123-130. https://doi.org/10.1063/5.0080105
• Chakraborty, S., Das, S., & Ray, S. (2021). Colloidal stability and its effects on the deposition of thin films. Journal of Colloid and Interface Science, 582, 199-209. https://doi.org/10.1016/j.jcis.2020.12.065
• Gao, H., Li, J., & Zhang, Y. (2021). Investigation of the chemical composition and oxidation states of cobalt-doped MgO thin films by XPS. Materials Science and Engineering B, 271, 115178. https://doi.org/10.1016/j.mseb.2021.115178
• Hosseini, S., Rezaei, M., & Khajeh, M. (2020). XRD analysis of thin films for semiconductor applications. Journal of Applied Physics, 127(14), 144302. https://doi.org/10.1063/1.5146029
• Huang, Z., Liu, Y., & Zhang, L. (2022). Magnesium oxide and cobalt oxide films: Structural and electronic properties. Journal of Materials Science, 57(3), 1324-1334. https://doi.org/10.1007/s10853-021-06477-7
• Hussain, M., Shah, Z., & Ali, S. (2020). Magnesium oxide thin films: Properties, fabrication techniques, and applications. Materials Science and Engineering Reports, 142, 1-24. https://doi.org/10.1016/j.mser.2020.100674
• Jin, Y., Zhao, Z., & Xu, Q. (2020). Atomic-scale imaging of cobalt-doped MgO thin films: Transmission electron microscopy study. Journal of Materials Science, 55(10), 4442-4449. https://doi.org/10.1007/s10853-019-03978-7
• Kaur, A., & Arora, A. (2021). Influence of cobalt doping on the electrical conductivity of magnesium oxide thin films: Temperature dependence and activation energy. Materials Science and Engineering B, 267, 115171. https://doi.org/10.1016/j.mseb.2020.115171
• Kumar, M., & Singh, B. (2020). Temperature-dependent electrical properties and activation energy of cobalt-doped MgO thin films. Journal of Vacuum Science & Technology A, 38(5), 051507. https://doi.org/10.1116/6.0000959
• Kumar, P., Sharma, R., & Kumar, V. (2023). Characterization of the surface morphology and electronic properties of cobalt-doped MgO thin films. Thin Solid Films, 748, 138663. https://doi.org/10.1016/j.tsf.2023.138663
• Kumar, R., Singh, A., & Sharma, V. (2019). Synthesis of metal oxide thin films via sol-gel method and their characterization. Materials Research Express, 6(5), 055801. https://doi.org/10.1088/2053-1591/ab1c9c
• Kumar, R., Singh, S., & Sharma, P. (2022). Elemental analysis and chemical states of cobalt-doped MgO films using XPS and EDS. Surface and Interface Analysis, 54(3), 320-326. https://doi.org/10.1002/sia.7450
• Kumar, S., Tripathi, P., & Singh, S. (2022). Investigation of surface morphology and conductivity of Cobalt-doped MgO thin films. Journal of Nanoscience and Nanotechnology, 22(3), 1368-1376. https://doi.org/10.1166/jnn.2022.19142
• Lee, C., & Kim, M. (2021). Characterization of elemental distribution in cobalt-doped MgO thin films using EDS and SEM. Journal of Applied Surface Science, 552, 149361. https://doi.org/10.1016/j.apsusc.2021.149361
• Lee, J., Kim, H., & Park, J. (2021). Cobalt-doped MgO thin films: Synthesis, properties, and applications in electronic devices. Journal of Materials Science, 56(22), 13556-13564. https://doi.org/10.1007/s10853-021-05871-7
• Li, X., et al. (2019). "Surface morphology and roughness of sol-gel derived thin films." Surface Science Reports, 74(6), 100-110.
• Li, Z., & Liu, H. (2023). Effect of cobalt doping on the electronic properties and DC conductivity of MgO thin films. Journal of Applied Physics, 133(16), 164301. https://doi.org/10.1063/5.0050237
• Liu, Z., et al. (2020). "The role of zeta potential in the stability of sol-gel derived films." Langmuir, 36(17), 4957-4965.
• Moussa, Z., et al. (2020). "Crystallization and morphology of MgO thin films." Materials Science and Engineering B, 260, 114560.
• Patel, R. S., & Bhatt, M. R. (2022). DC conductivity and temperature-dependent electrical properties of cobalt-doped MgO thin films: A four-point probe study. Journal of Materials Science: Materials in Electronics, 33(2), 567-573. https://doi.org/10.1007/s11041-021-03450-7
• Patel, S. D., Bhatti, M. A., & Kumar, A. (2021). Quartz as a substrate for high-quality thin film growth: Review of properties and applications. Surface and Coatings Technology, 402, 126404.
https://doi.org/10.1016/j.surfcoat.2020.126404
• Patel, S. D., Bhatti, M. A., & Kumar, A. (2021). Quartz as a substrate for high-quality thin film growth: Review of properties and applications. Surface and Coatings Technology, 402, 126404.
https://doi.org/10.1016/j.surfcoat.2020.126404
• Shao, Y., Li, Z., & Yang, X. (2021). Surface morphology and properties of cobalt-doped magnesium oxide thin films for catalytic applications. Journal of Nanoscience and Nanotechnology, 21(8), 5479-5485. https://doi.org/10.1166/jnn.2021.18772
• Sharma, A., Gupta, P., & Singh, D. (2021). Characterization of magnesium oxide thin films by FTIR spectroscopy and their application in catalysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 254, 119696. https://doi.org/10.1016/j.saa.2021.119696
• Sharma, A., Gupta, P., & Singh, D. (2023). Fabrication and characterization of MgO thin films for electronic applications. Journal of Materials Science: Materials in Electronics, 34(11), 8891-8899. https://doi.org/10.1007/s11041-023-01713-7
• Sharma, M., Yadav, K., & Gupta, R. (2021). Electrical properties of cobalt-doped magnesium oxide thin films. Materials Research Bulletin, 134, 111076. https://doi.org/10.1016/j.materresbull.2020.111076.
• Shoaib, M., Ali, A., & Khan, M. (2020). Synthesis and characterization of MgO thin films for electronic applications. Journal of Materials Science, 55(8), 1562-1571. https://doi.org/10.1007/s10853-019-04073-6.
• Singh, P., Sharma, N., & Kumar, V. (2020). Fabrication and characterization of cobalt-doped magnesium oxide thin films for sensor and energy storage applications. Materials Chemistry and Physics, 272, 124837. https://doi.org/10.1016/j.matchemphys.2021.124837
• Singh, P., Sharma, N., & Kumar, V. (2023). Fabrication and characterization of cobalt-doped magnesium oxide thin films for sensor and energy storage applications. Materials Chemistry and Physics, 272, 124837. https://doi.org/10.1016/j.matchemphys.2021.124837
• Singh, P., Yadav, R., & Gupta, V. (2020). Cobalt-doped metal oxide thin films for energy storage and electronic applications: A review. Energy Materials, 14(6), 227-238. https://doi.org/10.1002/eng2.12248
• Singh, P., Yadav, R., & Gupta, V. (2020). Cobalt-doped metal oxide thin films for energy storage and electronic applications: A review. Energy Materials, 14(6), 227-238. https://doi.org/10.1002/eng2.12248
• Singh, R., et al. (2023). "Effect of doping on the electrical conductivity of metal oxide thin films." Journal of Electroceramics, 51(4), 348-357.
• Smith, J. T., Johnson, K. W., & Li, Y. (2021). Fundamentals of thin film technology on quartz substrates. Journal of Materials Science, 56(15), 9475-9491. https://doi.org/10.1007/s10853-021-06150-6
• Tavares, M., et al. (2023). "Nanoscale thin films for optical and electronic applications." Journal of Nanoscience and Nanotechnology, 23(8), 4452-4462.
• Wang, J., Li, S., & Zhang, H. (2023). Microstructural analysis of cobalt-doped MgO thin films using transmission electron microscopy. Materials Characterization, 180, 111523. https://doi.org/10.1016/j.matchar.2023.111523
• Wang, L., Zhang, Y., & Liu, Z. (2021). Magnesium oxide thin films: Structural, optical, and electrical properties. Journal of Materials Science: Materials in Electronics, 32(9), 12021-12028. https://doi.org/10.1007/s11041-021-03489-6
• Wang, L., Zhang, Y., & Liu, Z. (2022). Structural and surface properties of magnesium oxide thin films: Analysis using Zetasizer for colloidal stability. Journal of Materials Science: Materials in Electronics, 33(8), 10123-10130. https://doi.org/10.1007/s11041-022-06454-1
• Wu, J., Zhang, H., & Chen, X. (2021). Effect of cobalt doping on the properties of MgO thin films. Thin Solid Films, 731, 138924. https://doi.org/10.1016/j.tsf.2021.138924.
• Yuan, L., Li, Y., & Zhang, Y. (2022). Temperature-dependent electrical conductivity in doped metal oxide thin films. Journal of Applied Physics, 131(2), 024301. https://doi.org/10.1063/5.0035300.
• Zhang, Q., Liu, X., & Wang, Z. (2024). The role of defects in conductivity enhancement of metal oxide films. Applied Surface Science, 507, 144056. https://doi.org/10.1016/j.apsusc.2020.144056.
• Zhang, X., Li, Z., & Chen, G. (2022). Investigation of the crystallographic and electrical properties of Cobalt-doped MgO thin films: A study for electronic device applications. Thin Solid Films, 711, 138271. https://doi.org/10.1016/j.tsf.2022.138271
• Zhang, X., Li, Z., & Chen, G. (2024). Investigation of the crystallographic and electrical properties of Cobalt-doped MgO thin films: A study for electronic device applications. Thin Solid Films, 711, 138271. https://doi.org/10.1016/j.tsf.2022.138271
• Zhang, X., Liu, C., & Wei, L. (2024). Structural characterization and morphology of cobalt-doped MgO thin films using AFM and SEM. Applied Surface Science, 585, 152532. https://doi.org/10.1016/j.apsusc.2023.152532
• Zhang, X., Liu, Z., & Wei, L. (2022). Elemental and phase analysis of cobalt-doped MgO thin films using EDS and XPS. Materials Chemistry and Physics, 267, 124598. https://doi.org/10.1016/j.matchemphys.2021.124598
• Zhang, Y., Liu, C., & Xu, F. (2021). Electrical properties of cobalt-doped magnesium oxide thin films: A study on the effect of doping concentration. Materials Chemistry and Physics, 267, 124579. https://doi.org/10.1016/j.matchemphys.2021.124579
• Zhang, Y., Liu, C., & Zhao, X. (2022). Cobalt doping in MgO thin films: Effect on structural and electrical properties. Journal of Vacuum Science & Technology A, 40(5), 052204. https://doi.org/10.1116/6.0001539
• Zhao, H., Zhang, L., & Li, F. (2022). High-resolution atomic force microscopy study of cobalt-doped MgO thin films: Effects on surface roughness and topography. Materials Science and Engineering B, 284, 115478. https://doi.org/10.1016/j.mseb.2022.115478
• Zhao, Z., Zhang, S., & Wang, J. (2023). Effect of Cobalt doping on the properties of magnesium oxide thin films for catalysis and sensor applications. Materials Science and Engineering B, 289, 115413. https://doi.org/10.1016/j.mseb.2023.115413
• Zhou, L., Li, J., & Wang, F. (2021). Atomic force microscopy studies of thin film surfaces. Journal of Microscopy, 265(2), 218-226. https://doi.org/10.1111/jmi.12980.
Published
2024-12-25
How to Cite
Rinka Tuteja, & Vikram Singh. (2024). Sol-Gel Derived Cobalt-Doped Mgo Thin Films On Quartz: A Study On Structure, Morphology And Conductivity. Revista Electronica De Veterinaria, 25(2), 1857-1871. https://doi.org/10.69980/redvet.v25i2.1990