Sol-Gel Derived Cobalt-Doped Mgo Thin Films On Quartz: A Study On Structure, Morphology And Conductivity
Abstract
In this study, cobalt-doped magnesium oxide (MgO) thin films were synthesized using the sol-gel method to investigate the structural, morphological, chemical, and electrical properties. The films were calcined at temperatures between 500°C and 600°C to achieve optimal uniformity and doping concentration. Structural analysis using X-ray diffraction (XRD) confirmed the cubic MgO structure, while Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) verified the successful incorporation of cobalt in both Co²⁺ and Co³⁺ oxidation states. Particle size analysis (PSA) and zeta potential measurements indicated a stable colloidal dispersion with an average particle size of 45–55 nm and a zeta potential of +30 mV. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed uniform grain morphology with small grains (~20–30 nm) and smooth surfaces (RMS roughness of 2.5–3 nm). The electrical properties revealed an increase in DC conductivity with higher cobalt doping, with values reaching 3.5 × 10⁻⁴ Ω⁻¹ cm⁻¹ at 5 mol% cobalt. Temperature-dependent conductivity followed an Arrhenius-type behavior, with activation energy values ranging from 0.21 eV to 0.36 eV. These findings demonstrate the potential of cobalt-doped MgO thin films for various electronic and sensing applications.
References
• Alvarez, R., Martínez, A., & García, E. (2022). Electrical properties of MgO thin films with dopants for semiconductor applications. Journal of Applied Physics, 132(3), 123-130. https://doi.org/10.1063/5.0080105
• Chakraborty, S., Das, S., & Ray, S. (2021). Colloidal stability and its effects on the deposition of thin films. Journal of Colloid and Interface Science, 582, 199-209. https://doi.org/10.1016/j.jcis.2020.12.065
• Gao, H., Li, J., & Zhang, Y. (2021). Investigation of the chemical composition and oxidation states of cobalt-doped MgO thin films by XPS. Materials Science and Engineering B, 271, 115178. https://doi.org/10.1016/j.mseb.2021.115178
• Hosseini, S., Rezaei, M., & Khajeh, M. (2020). XRD analysis of thin films for semiconductor applications. Journal of Applied Physics, 127(14), 144302. https://doi.org/10.1063/1.5146029
• Huang, Z., Liu, Y., & Zhang, L. (2022). Magnesium oxide and cobalt oxide films: Structural and electronic properties. Journal of Materials Science, 57(3), 1324-1334. https://doi.org/10.1007/s10853-021-06477-7
• Hussain, M., Shah, Z., & Ali, S. (2020). Magnesium oxide thin films: Properties, fabrication techniques, and applications. Materials Science and Engineering Reports, 142, 1-24. https://doi.org/10.1016/j.mser.2020.100674
• Jin, Y., Zhao, Z., & Xu, Q. (2020). Atomic-scale imaging of cobalt-doped MgO thin films: Transmission electron microscopy study. Journal of Materials Science, 55(10), 4442-4449. https://doi.org/10.1007/s10853-019-03978-7
• Kaur, A., & Arora, A. (2021). Influence of cobalt doping on the electrical conductivity of magnesium oxide thin films: Temperature dependence and activation energy. Materials Science and Engineering B, 267, 115171. https://doi.org/10.1016/j.mseb.2020.115171
• Kumar, M., & Singh, B. (2020). Temperature-dependent electrical properties and activation energy of cobalt-doped MgO thin films. Journal of Vacuum Science & Technology A, 38(5), 051507. https://doi.org/10.1116/6.0000959
• Kumar, P., Sharma, R., & Kumar, V. (2023). Characterization of the surface morphology and electronic properties of cobalt-doped MgO thin films. Thin Solid Films, 748, 138663. https://doi.org/10.1016/j.tsf.2023.138663
• Kumar, R., Singh, A., & Sharma, V. (2019). Synthesis of metal oxide thin films via sol-gel method and their characterization. Materials Research Express, 6(5), 055801. https://doi.org/10.1088/2053-1591/ab1c9c
• Kumar, R., Singh, S., & Sharma, P. (2022). Elemental analysis and chemical states of cobalt-doped MgO films using XPS and EDS. Surface and Interface Analysis, 54(3), 320-326. https://doi.org/10.1002/sia.7450
• Kumar, S., Tripathi, P., & Singh, S. (2022). Investigation of surface morphology and conductivity of Cobalt-doped MgO thin films. Journal of Nanoscience and Nanotechnology, 22(3), 1368-1376. https://doi.org/10.1166/jnn.2022.19142
• Lee, C., & Kim, M. (2021). Characterization of elemental distribution in cobalt-doped MgO thin films using EDS and SEM. Journal of Applied Surface Science, 552, 149361. https://doi.org/10.1016/j.apsusc.2021.149361
• Lee, J., Kim, H., & Park, J. (2021). Cobalt-doped MgO thin films: Synthesis, properties, and applications in electronic devices. Journal of Materials Science, 56(22), 13556-13564. https://doi.org/10.1007/s10853-021-05871-7
• Li, X., et al. (2019). "Surface morphology and roughness of sol-gel derived thin films." Surface Science Reports, 74(6), 100-110.
• Li, Z., & Liu, H. (2023). Effect of cobalt doping on the electronic properties and DC conductivity of MgO thin films. Journal of Applied Physics, 133(16), 164301. https://doi.org/10.1063/5.0050237
• Liu, Z., et al. (2020). "The role of zeta potential in the stability of sol-gel derived films." Langmuir, 36(17), 4957-4965.
• Moussa, Z., et al. (2020). "Crystallization and morphology of MgO thin films." Materials Science and Engineering B, 260, 114560.
• Patel, R. S., & Bhatt, M. R. (2022). DC conductivity and temperature-dependent electrical properties of cobalt-doped MgO thin films: A four-point probe study. Journal of Materials Science: Materials in Electronics, 33(2), 567-573. https://doi.org/10.1007/s11041-021-03450-7
• Patel, S. D., Bhatti, M. A., & Kumar, A. (2021). Quartz as a substrate for high-quality thin film growth: Review of properties and applications. Surface and Coatings Technology, 402, 126404.
https://doi.org/10.1016/j.surfcoat.2020.126404
• Patel, S. D., Bhatti, M. A., & Kumar, A. (2021). Quartz as a substrate for high-quality thin film growth: Review of properties and applications. Surface and Coatings Technology, 402, 126404.
https://doi.org/10.1016/j.surfcoat.2020.126404
• Shao, Y., Li, Z., & Yang, X. (2021). Surface morphology and properties of cobalt-doped magnesium oxide thin films for catalytic applications. Journal of Nanoscience and Nanotechnology, 21(8), 5479-5485. https://doi.org/10.1166/jnn.2021.18772
• Sharma, A., Gupta, P., & Singh, D. (2021). Characterization of magnesium oxide thin films by FTIR spectroscopy and their application in catalysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 254, 119696. https://doi.org/10.1016/j.saa.2021.119696
• Sharma, A., Gupta, P., & Singh, D. (2023). Fabrication and characterization of MgO thin films for electronic applications. Journal of Materials Science: Materials in Electronics, 34(11), 8891-8899. https://doi.org/10.1007/s11041-023-01713-7
• Sharma, M., Yadav, K., & Gupta, R. (2021). Electrical properties of cobalt-doped magnesium oxide thin films. Materials Research Bulletin, 134, 111076. https://doi.org/10.1016/j.materresbull.2020.111076.
• Shoaib, M., Ali, A., & Khan, M. (2020). Synthesis and characterization of MgO thin films for electronic applications. Journal of Materials Science, 55(8), 1562-1571. https://doi.org/10.1007/s10853-019-04073-6.
• Singh, P., Sharma, N., & Kumar, V. (2020). Fabrication and characterization of cobalt-doped magnesium oxide thin films for sensor and energy storage applications. Materials Chemistry and Physics, 272, 124837. https://doi.org/10.1016/j.matchemphys.2021.124837
• Singh, P., Sharma, N., & Kumar, V. (2023). Fabrication and characterization of cobalt-doped magnesium oxide thin films for sensor and energy storage applications. Materials Chemistry and Physics, 272, 124837. https://doi.org/10.1016/j.matchemphys.2021.124837
• Singh, P., Yadav, R., & Gupta, V. (2020). Cobalt-doped metal oxide thin films for energy storage and electronic applications: A review. Energy Materials, 14(6), 227-238. https://doi.org/10.1002/eng2.12248
• Singh, P., Yadav, R., & Gupta, V. (2020). Cobalt-doped metal oxide thin films for energy storage and electronic applications: A review. Energy Materials, 14(6), 227-238. https://doi.org/10.1002/eng2.12248
• Singh, R., et al. (2023). "Effect of doping on the electrical conductivity of metal oxide thin films." Journal of Electroceramics, 51(4), 348-357.
• Smith, J. T., Johnson, K. W., & Li, Y. (2021). Fundamentals of thin film technology on quartz substrates. Journal of Materials Science, 56(15), 9475-9491. https://doi.org/10.1007/s10853-021-06150-6
• Tavares, M., et al. (2023). "Nanoscale thin films for optical and electronic applications." Journal of Nanoscience and Nanotechnology, 23(8), 4452-4462.
• Wang, J., Li, S., & Zhang, H. (2023). Microstructural analysis of cobalt-doped MgO thin films using transmission electron microscopy. Materials Characterization, 180, 111523. https://doi.org/10.1016/j.matchar.2023.111523
• Wang, L., Zhang, Y., & Liu, Z. (2021). Magnesium oxide thin films: Structural, optical, and electrical properties. Journal of Materials Science: Materials in Electronics, 32(9), 12021-12028. https://doi.org/10.1007/s11041-021-03489-6
• Wang, L., Zhang, Y., & Liu, Z. (2022). Structural and surface properties of magnesium oxide thin films: Analysis using Zetasizer for colloidal stability. Journal of Materials Science: Materials in Electronics, 33(8), 10123-10130. https://doi.org/10.1007/s11041-022-06454-1
• Wu, J., Zhang, H., & Chen, X. (2021). Effect of cobalt doping on the properties of MgO thin films. Thin Solid Films, 731, 138924. https://doi.org/10.1016/j.tsf.2021.138924.
• Yuan, L., Li, Y., & Zhang, Y. (2022). Temperature-dependent electrical conductivity in doped metal oxide thin films. Journal of Applied Physics, 131(2), 024301. https://doi.org/10.1063/5.0035300.
• Zhang, Q., Liu, X., & Wang, Z. (2024). The role of defects in conductivity enhancement of metal oxide films. Applied Surface Science, 507, 144056. https://doi.org/10.1016/j.apsusc.2020.144056.
• Zhang, X., Li, Z., & Chen, G. (2022). Investigation of the crystallographic and electrical properties of Cobalt-doped MgO thin films: A study for electronic device applications. Thin Solid Films, 711, 138271. https://doi.org/10.1016/j.tsf.2022.138271
• Zhang, X., Li, Z., & Chen, G. (2024). Investigation of the crystallographic and electrical properties of Cobalt-doped MgO thin films: A study for electronic device applications. Thin Solid Films, 711, 138271. https://doi.org/10.1016/j.tsf.2022.138271
• Zhang, X., Liu, C., & Wei, L. (2024). Structural characterization and morphology of cobalt-doped MgO thin films using AFM and SEM. Applied Surface Science, 585, 152532. https://doi.org/10.1016/j.apsusc.2023.152532
• Zhang, X., Liu, Z., & Wei, L. (2022). Elemental and phase analysis of cobalt-doped MgO thin films using EDS and XPS. Materials Chemistry and Physics, 267, 124598. https://doi.org/10.1016/j.matchemphys.2021.124598
• Zhang, Y., Liu, C., & Xu, F. (2021). Electrical properties of cobalt-doped magnesium oxide thin films: A study on the effect of doping concentration. Materials Chemistry and Physics, 267, 124579. https://doi.org/10.1016/j.matchemphys.2021.124579
• Zhang, Y., Liu, C., & Zhao, X. (2022). Cobalt doping in MgO thin films: Effect on structural and electrical properties. Journal of Vacuum Science & Technology A, 40(5), 052204. https://doi.org/10.1116/6.0001539
• Zhao, H., Zhang, L., & Li, F. (2022). High-resolution atomic force microscopy study of cobalt-doped MgO thin films: Effects on surface roughness and topography. Materials Science and Engineering B, 284, 115478. https://doi.org/10.1016/j.mseb.2022.115478
• Zhao, Z., Zhang, S., & Wang, J. (2023). Effect of Cobalt doping on the properties of magnesium oxide thin films for catalysis and sensor applications. Materials Science and Engineering B, 289, 115413. https://doi.org/10.1016/j.mseb.2023.115413
• Zhou, L., Li, J., & Wang, F. (2021). Atomic force microscopy studies of thin film surfaces. Journal of Microscopy, 265(2), 218-226. https://doi.org/10.1111/jmi.12980.