Bidirectional Recurrent Capsule Networks with Transformer Based Learning for Twitter Sentiment Classification

  • Simran Rawat Gaurav Suratwala
  • Aman Singh Jagat Jeet Biswas
  • Jeffrey Obiri Boahen Hanumant Jagdish Chauhan
  • Mudit Parihar
  • Yashwardhan Atre
  • Bhavani Sangani
  • Prof. Hardik Parmar
Keywords: Bidirectional Recurrent Capsule Networks, Sentiment Analysis, Transformer, Capsule Network, BiLSTM, GRU, Self-attention, Deep Learning

Abstract

Rapid developments have been happening in recent years in terms of classifying aspect-level sentiment analysis (ASA). Several research gaps have been identified with the existing approaches like aspect extraction, opinion target aspects, and handling long-term dependencies between the contextual aspects. In this work, we focus on addressing the above limitations by proposing Bidirectional Recurrent Capsule Networks (BRCN) framework with a pre-trained BERTweet transformer and sequence-based self-attention mechanism. This combination relatively improves the task of ASA. Furthermore, we also contributed to the development of one dataset on Covid-19 based on public tweets collected from social media to analyze its intensity. Based on the experimental results, it is evident that the proposed model surpasses other traditional approaches by identifying the hidden contextual information using sequence position information. In addition, we evaluated the performance of our proposed model against other approaches using three benchmark datasets, namely IMDB, HNT, and MR. Our findings reveal that our model achieved higher accuracy and had better time complexity than the existing approaches.

Author Biographies

Simran Rawat Gaurav Suratwala

Student, Parul Institute of Engineering and Technology, Parul University, Waghodia Road, 391760 Vadodara, Gujarat

Aman Singh Jagat Jeet Biswas

Student, Parul Institute of Engineering and Technology, Parul University, Waghodia Road, 391760 Vadodara, Gujarat

Jeffrey Obiri Boahen Hanumant Jagdish Chauhan

Student, Parul Institute of Engineering and Technology, Parul University, Waghodia Road, 391760 Vadodara, Gujarat

Mudit Parihar

Student, Parul Institute of Engineering and Technology, Parul University, Waghodia Road, 391760 Vadodara, Gujarat

Yashwardhan Atre

Student, Parul Institute of Engineering and Technology, Parul University, Waghodia Road, 391760, Vadodara, Gujarat

Bhavani Sangani

Student, Parul Institute of Engineering and Technology, Parul University, Waghodia Road, 391760, Vadodara, Gujarat

Prof. Hardik Parmar

Assistant Professor, Parul Institute of Engineering and Technology, Parul University, Waghodia Road 391760, Vadodara, Gujarat.

References

1. Abdi, A., Shamsuddin, S. M., Hasan, S., & Piran, J. (2019). Deep learning-based sentiment classification of evaluative text based on Multi-feature fusion. Information Processing and Management, 56(4), 1245–1259. https://doi.org/10.1016/j.ipm.2019.02.018
2. Adarsh, R., Patil, A., Rayar, S., & Veena, K. M. (2019). Comparison of VADER and LSTM for sentiment analysis. International Journal of Recent Technology and Engineering.
3. Ait Hammou, B., Ait Lahcen, A., & Mouline, S. (2020). Towards a real-time processing framework based on improved distributed recurrent neural network variants with fastText for social big data analytics. Information Processing and Management, 57(1), 102122. https://doi.org/10.1016/j.ipm.2019.102122
4. Al-Smadi, M., Talafha, B., Al-Ayyoub, M., & Jararweh, Y. (2019). Using long short-term memory deep neural networks for aspect-based sentiment analysis of Arabic reviews. International Journal of Machine Learning and Cybernetics. https://doi.org/10.1007/s13042-018-0799-4
5. Alaei, A. R., Becken, S., & Stantic, B. (2019). Sentiment Analysis in Tourism: Capitalizing on Big Data. Journal of Travel Research, 58(2), 175–191. https://doi.org/10.1177/0047287517747753
6. Amin, A., Hossain, I., Akther, A., & Alam, K. M. (2019). Bengali VADER: A Sentiment Analysis Approach Using Modified VADER. 2nd International Conference on Electrical, Computer and Communication Engineering, ECCE 2019. https://doi.org/10.1109/ECACE.2019.8679144
7. Bagheri, A., Saraee, M., & de Jong, F. (2014). ADM-LDA: An aspect detection model based on topic modeling using the structure of review sentences. Journal of Information Science, 40(5), 621–636. https://doi.org/10.1177/0165551514538744
8. Barkur, G., Vibha, & Kamath, G. B. (2020). Sentiment analysis of nationwide lockdown due to COVID 19 outbreak: Evidence from India. Asian Journal of Psychiatry, 51(April), 102089. https://doi.org/10.1016/j.ajp.2020.102089
9. Baziotis, C., Pelekis, N., & Doulkeridis, C. (2018). DataStories at SemEval-2017 Task 4: Deep LSTM with Attention for Message-level and Topic-based Sentiment Analysis. https://doi.org/10.18653/v1/s17-2126
10. Beryl Joylin, A., Aswathi, T., Suma, P., & Victor, N. (2016). Sentiment analysis on “ebola” outbreak using twitter data. International Journal of Pharmacy and Technology.
11. Biswas, S., Chadda, E., & Ahmad, F. (2015). Sentiment analysis with gated recurrent units. Advances in Computer Science and Information Technology (ACSIT).
12. Cambria, E., Schuller, B., Xia, Y., & Havasi, C. (2013). New avenues in opinion mining and sentiment analysis. IEEE Intelligent Systems. https://doi.org/10.1109/MIS.2013.30
13. Chen, G., & Xiao, L. (2016). Selecting publication keywords for domain analysis in bibliometrics: A comparison of three methods. Journal of Informetrics. https://doi.org/10.1016/j.joi.2016.01.006
14. Chen, H., Li, S., Wu, P., Yi, N., Li, S., & Huang, X. (2018). Fine-grained sentiment analysis of Chinese reviews using LSTM network. Journal of Engineering Science and Technology Review, 11(1), 174–179. https://doi.org/10.25103/jestr.111.21
15. Chen, T., Xu, R., He, Y., & Wang, X. (2017). Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN. Expert Systems with Applications, 72, 221–230. https://doi.org/10.1016/j.eswa.2016.10.065
16. Chen, Y.-C., Gan, Z., Cheng, Y., Liu, J., & Liu, J. (2020). Distilling Knowledge Learned in BERT for Text Generation. https://doi.org/10.18653/v1/2020.acl-main.705
17. Cho, K. (2018). Strawman: An Ensemble of Deep Bag-of-Ngrams for Sentiment Analysis. https://doi.org/10.18653/v1/w17-5409
18. Crossley, S. A., Kyle, K., & McNamara, D. S. (2017). Sentiment Analysis and Social Cognition Engine (SEANCE): An automatic tool for sentiment, social cognition, and social-order analysis. Behavior Research Methods, 49(3), 803–821. https://doi.org/10.3758/s13428-016-0743-z
19. Devi, K. A., Edara, D. C., Sistla, V. P. K., & Kolli, V. K. K. (2018). Extended correlated principal component analysis with SVM-PUK in opinion mining. Turkish Journal of Electrical Engineering and Computer Sciences, 26(5), 2570–2582. https://doi.org/10.3906/elk-1704-178
20. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference.
21. Dey, A., Jenamani, M., & Thakkar, J. J. (2018). Senti-N-Gram: An n-gram lexicon for sentiment analysis. Expert Systems with Applications, 103, 92–105.
22. Do, H. H., Prasad, P. W. C., Maag, A., & Alsadoon, A. (2019). Deep Learning for Aspect-Based Sentiment Analysis: A Comparative Review. In Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2018.10.003
23. Edara, D. C., Vanukuri, L. P., Sistla, V., & Kolli, V. K. K. (2019). Sentiment analysis and text categorization of cancer medical records with LSTM. Journal of Ambient Intelligence and Humanized Computing, 0123456789. https://doi.org/10.1007/s12652-019-01399-8
24. Elberrichi, Z. (2006). Text mining using N-grams. Proceedings of the International Conference on Computer Science and Its Applications.
25. Erra, U., Senatore, S., Minnella, F., & Caggianese, G. (2015). Approximate TF-IDF based on topic extraction from massive message stream using the GPU. Information Sciences. https://doi.org/10.1016/j.ins.2014.08.062
26. Feizollah, A., Ainin, S., Anuar, N. B., Abdullah, N. A. B., & Hazim, M. (2019). Halal Products on Twitter: Data Extraction and Sentiment Analysis Using Stack of Deep Learning Algorithms. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2923275
27. Fu, X., Yang, J., Li, J., Fang, M., & Wang, H. (2018). Lexicon-Enhanced LSTM with Attention for General Sentiment Analysis. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2878425
28. Ghorbani, M., Bahaghighat, M., Xin, Q., & Özen, F. (2020). ConvLSTMConv network: a deep learning approach for sentiment analysis in cloud computing. Journal of Cloud Computing, 9(1), 1–12. https://doi.org/10.1186/s13677-020-00162-1
29. Habimana, O., Li, Y., Li, R., Gu, X., & Yu, G. (2020). Sentiment analysis using deep learning approaches: an overview. Science China Information Sciences, 63(1), 1–36. https://doi.org/10.1007/s11432-018-9941-6
30. Han, Y., Liu, M., & Jing, W. (2020). Aspect-Level Drug Reviews Sentiment Analysis Based on Double BiGRU and Knowledge Transfer. IEEE Access, 8, 21314–21325. https://doi.org/10.1109/ACCESS.2020.2969473
31. Hardt, D., Hovy, D., & Lamprinidis, S. (2020). Predicting news headline popularity with syntactic and semantic knowledge using multi-task learning. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018.
32. Harish Rao M , Shashikumar D.R, H. R. M. , S. D. . (2017). Automatic Product Review Sentiment Analysis Using Vader and Feature Visulaization. International Journal of Computer Science Engineering and Information Technology Research. https://doi.org/10.24247/ijcseitraug20178
33. Hassan, A., & Mahmood, A. (2018). Convolutional Recurrent Deep Learning Model for Sentence Classification. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2814818
34. Heikal, M., Torki, M., & El-Makky, N. (2018). Sentiment Analysis of Arabic Tweets using Deep Learning. Procedia Computer Science. https://doi.org/10.1016/j.procs.2018.10.466
35. Hiremath, B. N., & Patil, M. M. (2020). Enhancing Optimized Personalized Therapy in Clinical Decision Support System using Natural Language Processing. Journal of King Saud University - Computer and Information Sciences, xxxx. https://doi.org/10.1016/j.jksuci.2020.03.006
36. Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. ACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers). https://doi.org/10.18653/v1/p18-1031
37. Ichev, R., & Marinč, M. (2018). Stock prices and geographic proximity of information: Evidence from the Ebola outbreak. International Review of Financial Analysis. https://doi.org/10.1016/j.irfa.2017.12.004
38. Inouye, D., Ravikumar, P., & Dhillon, I. (2014). Admixture of Poisson MRFs: A Topic Model with Word Dependencies. Journal of Machine Learning Research, Icml, 683–691. http://jmlr.org/proceedings/papers/v32/inouye14.html
39. Jain, D. K., Jain, R., Upadhyay, Y., Kathuria, A., & Lan, X. (2020). Deep Refinement: capsule network with attention mechanism-based system for text classification. Neural Computing and Applications, 32(7), 1839–1856. https://doi.org/10.1007/s00521-019-04620-z
40. Jameel, S., & Lam, W. (2013). An n-gram topic model for time-stamped documents. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-36973-5_25
41. Jin, M., Luo, X., Zhu, H., & Zhuo, H. H. (2018). Combining deep learning and topic modeling for review understanding in context-Aware recommendation. NAACL HLT 2018 - 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 1, 1605–1614. https://doi.org/10.18653/v1/n18-1145
42. John, B., Baulch, B., & Wickramasinghe, N. (2019). A Sentiment Analysis of the 2014-15 Ebola Outbreak in the Media and Social Media. https://doi.org/10.4018/978-1-7998-1371-2.ch014
43. Kastrati, Z., Imran, A. S., & Yayilgan, S. Y. (2019). The impact of deep learning on document classification using semantically rich representations. Information Processing and Management, 56(5), 1618–1632. https://doi.org/10.1016/j.ipm.2019.05.003
44. Khan, K., Baharudin, B., Khan, A., & Ullah, A. (2014). Mining opinion components from unstructured reviews: A review. In Journal of King Saud University - Computer and Information Sciences. https://doi.org/10.1016/j.jksuci.2014.03.009
45. Kim, E. H. J., Jeong, Y. K., Kim, Y., Kang, K. Y., & Song, M. (2015). Topic-based content and sentiment analysis of Ebola virus on Twitter and in the news. Journal of Information Science. https://doi.org/10.1177/0165551515608733
46. Kim, H. K., Kim, H., & Cho, S. (2017). Bag-of-concepts: Comprehending document representation through clustering words in distributed representation. Neurocomputing. https://doi.org/10.1016/j.neucom.2017.05.046
47. Kouzy, R., Abi Jaoude, J., Kraitem, A., El Alam, M. B., Karam, B., Adib, E., Zarka, J., Traboulsi, C., Akl, E., & Baddour, K. (2020). Coronavirus Goes Viral: Quantifying the COVID-19 Misinformation Epidemic on Twitter. Cureus. https://doi.org/10.7759/cureus.7255
48. Kruthika, K. R., Rajeswari, & Maheshappa, H. D. (2019). CBIR system using Capsule Networks and 3D CNN for Alzheimer’s disease diagnosis. Informatics in Medicine Unlocked, 14(November 2018), 59–68. https://doi.org/10.1016/j.imu.2018.12.001
49. Kumar, C. S. P., & Babu, L. D. D. (2020). Evolving dictionary based sentiment scoring framework for patient authored text. Evolutionary Intelligence, september 2011. https://doi.org/10.1007/s12065-020-00366-z
50. Kumar, R., Pannu, H. S., & Malhi, A. K. (2020). Aspect-based sentiment analysis using deep networks and stochastic optimization. Neural Computing and Applications. https://doi.org/10.1007/s00521-019-04105-z
51. Kumaresh, N., Bonta, V., & Janardhan, N. (2019). A Comprehensive Study on Lexicon Based Approaches for Sentiment Analysis. In Asian Journal of Computer Science and Technology.
52. Lamsal, R. (2020). Design and analysis of a large-scale COVID-19 tweets dataset. Applied Intelligence. https://doi.org/10.1007/s10489-020-02029-z
53. Lan, M., Zhang, Z., Lu, Y., & Wu, J. (2016). Three Convolutional Neural Network-based models for learning Sentiment Word Vectors towards sentiment analysis. Proceedings of the International Joint Conference on Neural Networks, 2016-Octob, 3172–3179. https://doi.org/10.1109/IJCNN.2016.7727604
54. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. In arXiv.
55. Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2020). BioBERT: A pre-trained biomedical language representation model for biomedical text mining. Bioinformatics. https://doi.org/10.1093/bioinformatics/btz682
56. Letarte, G., Paradis, F., Giguère, P., & Laviolette, F. (2019). Importance of Self-Attention for Sentiment Analysis. https://doi.org/10.18653/v1/w18-5429
57. Li, B., Liu, T., Zhao, Z., Wang, P., & Du, X. (2017). Neural bag-of-ngrams. 31st AAAI Conference on Artificial Intelligence, AAAI 2017.
58. Li, W., Qi, F., Tang, M., & Yu, Z. (2020). Bidirectional LSTM with self-attention mechanism and multi-channel features for sentiment classification. Neurocomputing, 387(xxxx), 63–77. https://doi.org/10.1016/j.neucom.2020.01.006
59. Liao, S., Wang, J., Yu, R., Sato, K., & Cheng, Z. (2017). CNN for situations understanding based on sentiment analysis of twitter data. Procedia Computer Science. https://doi.org/10.1016/j.procs.2017.06.037
60. Lien Minh, D., Sadeghi-Niaraki, A., Huy, H. D., Min, K., & Moon, H. (2018). Deep learning approach for short-term stock trends prediction based on two-stream gated recurrent unit network. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2868970
61. Lin, C., He, Y., Everson, R., & Rüger, S. (2012). Weakly supervised joint sentiment-topic detection from text. IEEE Transactions on Knowledge and Data Engineering, 24(6), 1134–1145. https://doi.org/10.1109/TKDE.2011.48
62. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A robustly optimized BERT pretraining approach. In arXiv.
63. Luo, L. xia. (2019). Network text sentiment analysis method combining LDA text representation and GRU-CNN. Personal and Ubiquitous Computing. https://doi.org/10.1007/s00779-018-1183-9
64. Ma, X., Zeng, J., Peng, L., Fortino, G., & Zhang, Y. (2019). Modeling multi-aspects within one opinionated sentence simultaneously for aspect-level sentiment analysis. Future Generation Computer Systems, 93, 304–311. https://doi.org/10.1016/j.future.2018.10.041
65. Ma, Y., Peng, H., Khan, T., Cambria, E., & Hussain, A. (2018). Sentic LSTM: a Hybrid Network for Targeted Aspect-Based Sentiment Analysis. Cognitive Computation, 10(4), 639–650. https://doi.org/10.1007/s12559-018-9549-x
66. Majumder, N., Poria, S., Peng, H., Chhaya, N., Cambria, E., & Gelbukh, A. (2019). Sentiment and Sarcasm Classification with Multitask Learning. IEEE Intelligent Systems, 34(3), 38–43. https://doi.org/10.1109/MIS.2019.2904691
67. Malhotra, S., Kumar, V., & Agarwal, A. (2021). Bidirectional transfer learning model for sentiment analysis of natural language. Journal of Ambient Intelligence and Humanized Computing, 2018. https://doi.org/10.1007/s12652-020-02800-7
68. Mandhula, T., Pabboju, S., & Gugulotu, N. (2019). Predicting the customer’s opinion on amazon products using selective memory architecture-based convolutional neural network. Journal of Supercomputing, 0123456789. https://doi.org/10.1007/s11227-019-03081-4
69. Naeim, M. (2020). Coronavirus disease (COVID-19) outbreak provides a unique platform to review behavioral changes in Iran. Asian Journal of Psychiatry, 51, 102090. https://doi.org/10.1016/j.ajp.2020.102090
70. Nguyen, D. Q., Vu, T., & Nguyen, A. T. (2020). BERTweet: A pre-trained language model for english tweets. In arXiv. https://doi.org/10.18653/v1/2020.emnlp-demos.2
71. Nikolenko, S. I., Koltcov, S., & Koltsova, O. (2017). Topic modelling for qualitative studies. Journal of Information Science. https://doi.org/10.1177/0165551515617393
72. Pandey, P. (2018). Simplifying Sentiment Analysis using VADER in Python (on Social Media Text). In Analytics Vidhya.
73. Pang, X., Wan, B., Li, H., & Lin, W. (2016). MR-LDA: An efficient topic model for classification of short text in big social data. International Journal of Grid and High Performance Computing, 8(4), 100–113. https://doi.org/10.4018/IJGHPC.2016100106
74. Park, H., Reber, B. H., & Chon, M. G. (2016). Tweeting as health communication: Health organizations use of twitter for health promotion and public engagement. Journal of Health Communication. https://doi.org/10.1080/10810730.2015.1058435
75. Penghua, Z., & Dingyi, Z. (2019). Bidirectional-GRU based on attention mechanism for aspect-level Sentiment Analysis. ACM International Conference Proceeding Series. https://doi.org/10.1145/3318299.3318368
76. Qaiser, S., & Ali, R. (2018). Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents. International Journal of Computer Applications. https://doi.org/10.5120/ijca2018917395
77. Ravi, K., & Ravi, V. (2015). A survey on opinion mining and sentiment analysis: Tasks, approaches and applications. Knowledge-Based Systems, 89, 14–46. https://doi.org/10.1016/j.knosys.2015.06.015
78. Rehman, A. U., Malik, A. K., Raza, B., & Ali, W. (2019). A Hybrid CNN-LSTM Model for Improving Accuracy of Movie Reviews Sentiment Analysis. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-019-07788-7
79. Rhanoui, M., Mikram, M., Yousfi, S., & Barzali, S. (2019). A CNN-BiLSTM Model for Document-Level Sentiment Analysis. Machine Learning and Knowledge Extraction. https://doi.org/10.3390/make1030048
80. Ribeiro, F. N., Araújo, M., Gonçalves, P., André Gonçalves, M., & Benevenuto, F. (2016). SentiBench - a benchmark comparison of state-of-the-practice sentiment analysis methods. EPJ Data Science, 5(1), 1–29. https://doi.org/10.1140/epjds/s13688-016-0085-1
81. Rozental, A., & Fleischer, D. (2018). Amobee at SemEval-2018 Task 1: GRU Neural Network with a CNN Attention Mechanism for Sentiment Classification. https://doi.org/10.18653/v1/s18-1033
82. Schouten, K., & Frasincar, F. (2016). Survey on Aspect-Level Sentiment Analysis. IEEE Transactions on Knowledge and Data Engineering, 28(3), 813–830. https://doi.org/10.1109/TKDE.2015.2485209
83. Shin, B., Lee, T., & Choi, J. D. (2018). Lexicon Integrated CNN Models with Attention for Sentiment Analysis. https://doi.org/10.18653/v1/w17-5220
84. Shuang, K., Ren, X., Yang, Q., Li, R., & Loo, J. (2019). AELA-DLSTMs: Attention-Enabled and Location-Aware Double LSTMs for aspect-level sentiment classification. Neurocomputing, 334, 25–34. https://doi.org/10.1016/j.neucom.2018.11.084
85. Sun, S., Luo, C., & Chen, J. (2017). A review of natural language processing techniques for opinion mining systems. Information Fusion. https://doi.org/10.1016/j.inffus.2016.10.004
86. Tao, J., & Fang, X. (2020). Toward multi-label sentiment analysis: a transfer learning based approach. Journal of Big Data, 7(1), 1–26. https://doi.org/10.1186/s40537-019-0278-0
87. TF-IDF. (2012). In SpringerReference. https://doi.org/10.1007/springerreference_179544
88. Thu, P. P., & Aung, T. N. (2018). Implementation of emotional features on satire detection. International Journal of Networked and Distributed Computing. https://doi.org/10.2991/ijndc.2018.6.2.3
89. Tran, T. U., Hoang, H. T. T., & Huynh, H. X. (2019). Aspect extraction with bidirectional GRU and CRF. RIVF 2019 - Proceedings: 2019 IEEE-RIVF International Conference on Computing and Communication Technologies. https://doi.org/10.1109/RIVF.2019.8713663
90. Varalakshmi, R., & Swetha, R. (2020). Covid-19 lock down: People psychology due to law enforcement. Asian Journal of Psychiatry, 51, 102102. https://doi.org/10.1016/j.ajp.2020.102102
91. Vibha, Prabhu, A. N., Kamath, G. B., & Pai, D. V. (2020). Keeping the country positive during the COVID 19 pandemic: Evidence from India. Asian Journal of Psychiatry, 51, 102118. https://doi.org/10.1016/j.ajp.2020.102118
92. Wallach, H. M. (2006). Topic modeling: Beyond bag-of-words. ACM International Conference Proceeding Series. https://doi.org/10.1145/1143844.1143967
93. Wang, X., McCallum, A., & Wei, X. (2007). Topical N-grams: Phrase and topic discovery, with an application to information retrieval. Proceedings - IEEE International Conference on Data Mining, ICDM. https://doi.org/10.1109/ICDM.2007.86
94. Wu, C., Wu, F., Wu, S., Yuan, Z., & Huang, Y. (2018). A hybrid unsupervised method for aspect term and opinion target extraction. Knowledge-Based Systems. https://doi.org/10.1016/j.knosys.2018.01.019
95. Xiao, Z., Li, X., Wang, L., Yang, Q., Du, J., & Sangaiah, A. K. (2018). Using convolution control block for Chinese sentiment analysis. Journal of Parallel and Distributed Computing. https://doi.org/10.1016/j.jpdc.2017.10.018
96. Xie, X., Ge, S., Hu, F., Xie, M., & Jiang, N. (2019). An improved algorithm for sentiment analysis based on maximum entropy. Soft Computing, 23(2), 599–611. https://doi.org/10.1007/s00500-017-2904-0
97. Xu, G., Meng, Y., Qiu, X., Yu, Z., & Wu, X. (2019). Sentiment analysis of comment texts based on BiLSTM. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2909919
98. Yadollahi, A., Shahraki, A. G., & Zaiane, O. R. (2017). Current state of text sentiment analysis from opinion to emotion mining. ACM Computing Surveys. https://doi.org/10.1145/3057270
99. Yang, C., Zhang, H., Jiang, B., & Li, K. (2019). Aspect-based sentiment analysis with alternating coattention networks. Information Processing and Management, 56(3), 463–478. https://doi.org/10.1016/j.ipm.2018.12.004
100. Yang, M., Zhao, W., Chen, L., Qu, Q., Zhao, Z., & Shen, Y. (2019). Investigating the transferring capability of capsule networks for text classification. Neural Networks, 118, 247–261. https://doi.org/10.1016/j.neunet.2019.06.014
101. Yang, Q., Rao, Y., Xie, H., Wang, J., Wang, F. L., & Chan, W. H. (2019). Segment-Level Joint Topic-Sentiment Model for Online Review Analysis. IEEE Intelligent Systems, 34(1), 43–50. https://doi.org/10.1109/MIS.2019.2899142
102. Yang, Yi, & Eisenstein, J. (2017). Overcoming Language Variation in Sentiment Analysis with Social Attention. Transactions of the Association for Computational Linguistics. https://doi.org/10.1162/tacl_a_00062
103. Yang, Yongshi, Peng, F., Wang, R., Guan, K., Jiang, T., Xu, G., Sun, J., & Chang, C. (2020). The deadly coronaviruses: The 2003 SARS pandemic and the 2020 novel coronavirus epidemic in China. In Journal of Autoimmunity. https://doi.org/10.1016/j.jaut.2020.102434
104. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., & Le, Q. V. (2019). XLNet: Generalized autoregressive pretraining for language understanding. Advances in Neural Information Processing Systems.
105. Yin, Z., Fabbri, D., Rosenbloom, S. T., & Malin, B. (2015). A scalable framework to detect personal health mentions on Twitter. Journal of Medical Internet Research. https://doi.org/10.2196/jmir.4305
106. Yoon, S., Elhadad, N., & Bakken, S. (2013). A practical approach for content mining of tweets. American Journal of Preventive Medicine. https://doi.org/10.1016/j.amepre.2013.02.025
107. Yu, J., Jiang, J., & Xia, R. (2019). Global inference for aspect and opinion terms co-extraction based on multi-task neural networks. IEEE/ACM Transactions on Audio Speech and Language Processing, 27(1), 168–177. https://doi.org/10.1109/TASLP.2018.2875170
108. Zhang, Y., Jin, R., & Zhou, Z. H. (2010). Understanding bag-of-words model: A statistical framework. International Journal of Machine Learning and Cybernetics. https://doi.org/10.1007/s13042-010-0001-0
109. Zhang, Z., Zou, Y., & Gan, C. (2018). Textual sentiment analysis via three different attention convolutional neural networks and cross-modality consistent regression. Neurocomputing. https://doi.org/10.1016/j.neucom.2017.09.080
110. Zhao, R., & Mao, K. (2018). Fuzzy Bag-of-Words Model for Document Representation. IEEE Transactions on Fuzzy Systems. https://doi.org/10.1109/TFUZZ.2017.2690222
111. Zhao, Z., Liu, T., Li, S., Li, B., & Du, X. (2017). Ngram2vec: Learning improved word representations from ngram co-occurrence statistics. EMNLP 2017 - Conference on Empirical Methods in Natural Language Processing, Proceedings, 244–253. https://doi.org/10.18653/v1/d17-1023
112. Zhou, J., Lu, Y., Dai, H. N., Wang, H., & Xiao, H. (2019). Sentiment analysis of Chinese microblog based on stacked bidirectional LSTM. IEEE Access.
113. Zou, Y., Gui, T., Zhang, Q., & Huang, X. (2018). A Lexicon-Based Supervised Attention Model for Neural Sentiment Analysis. Coling-2018. https://doi.org/10.1371/journal.pone.0078994.
Published
2024-11-22
How to Cite
Simran Rawat Gaurav Suratwala, Aman Singh Jagat Jeet Biswas, Jeffrey Obiri Boahen Hanumant Jagdish Chauhan, Mudit Parihar, Yashwardhan Atre, Bhavani Sangani, & Prof. Hardik Parmar. (2024). Bidirectional Recurrent Capsule Networks with Transformer Based Learning for Twitter Sentiment Classification. Revista Electronica De Veterinaria, 25(2), 1666-1684. https://doi.org/10.69980/redvet.v25i2.1938