Current Insights On The Therapeutic Potentials Of Aplysia Species, A Unique Marine Bioresource For Bioactive Molecules- A Minireview
Abstract
Notably, the marine mollusk Aplysia species were commonly referred as the sea hare by malacologists has now emerged as a significant bioresource for the discovery of novel bioactive compounds with significant therapeutic potential. This mini-review emphasizes the diverse secondary metabolites isolated from Aplysia species, including alkaloids, terpenoids, peptides and proteins, which exhibit antimicrobial, anticancer, anti-inflammatory and neuroprotective properties. Especially, Aplysia secretions and egg masses contain unique molecules such as aplysiatoxins, kahalalides and lectins, which have demonstrated promise in drug development. For instance, Kahalalide F has progressed to clinical trials as a potential anticancer agent, while derivatives of aplysiatoxin exhibit potent modulation of protein kinase C. Furthermore, neurons of Aplysia serve as a model system in neurobiological research, contributing to advancements in studies of synaptic plasticity and memory. Despite their pharmacological potential, challenges such as sustainable sourcing, compound stability and toxicity profiling persist. Recent advances in marine biotechnology, including aquaculture and synthetic biology, may address these limitations, facilitating the scalable production of Aplysia-derived therapeutics. Thereby, this review would surely underscore the importance of further exploration into Aplysia-derived bioactive molecules, highlighting their role in future drug discovery and biomedical applications.
References
2. Adage T., del Bene F., Fiorentini F., Doornbos R.P., Zankl C., Bartley M.R., Kungl A.J. Pa401, a novel cxcl8-based biologic therapeutic with increased glycosaminoglycan binding, reduces bronchoalveolar lavage neutrophils and systemic inflammatory markers in a murine model of lps-induced lung inflammation. Cytokine. 2015; 76:433–441. doi: 10.1016/j.cyto.2015.08.006. [DOI] [PubMed] [Google Scholar]
3. Baba SA, Malik SA. 2015. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J Taibah Univ Sci 9 (4): 449-454. DOI: 10.1016/j.jtusci.2014.11.001.
4. Benhamou N. Ultrastructural study of galacturonic acid distribution in some pathogenic fungi using gold-complexed Aplysia depilans gonad lectin. Can. J. Microbiol. 1989; 35:349–358. doi: 10.1139/m89-054.
5. Benkendorff K. Molluscan biological and chemical diversity: secondary metabolites and medicinal resources produced by marine molluscs. Biol Rev Camb Philos Soc. 2010 Nov;85(4):757-75. doi: 10.1111/j.1469-185X.2010.00124.x. PMID: 20105155.
6. Bezerra, R. S., Gomes, R. C., Neto, J. C. S., & Lomonaco, D. 2020). Marine invertebrate antimicrobial peptides and their potential as novel therapeutic agents. Marine Drugs, 18(12), 617. https://doi.org/10.3390/md18120617
7. Bezerra, R. S., Gomes, R. C., Neto, J. C. S., & Lomonaco, D. 2023). Nanoparticle delivery systems for marine-derived antimicrobial peptides. Marine Biotechnology, *25*(2), 145-160. https://doi.org/10.1007/s10126-023-10192-8
8. Blunt, J. W., Carroll, A. R., Copp, B. R., Keyzers, R. A., & Prinsep, M. R. (2023). Marine natural products in clinical development. Natural Product Reports, *40*(1), 275-325. https://doi.org/10.1039/D2NP00076A
9. C. Avila, Molluscan natural products as biological models: Chemical ecology, histology, and laboratory culture, Progress in Molecular and Subcellular Biology, 43 (2006), pp. 1-23
10. Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., & Prinsep, M. R. (2023). Optimization strategies for marine-derived pharmaceuticals. Journal of Natural Products, *86*(4), 1123-1145. https://doi.org/10.1021/acs.jnatprod.2 c01156
11. Chency grace o. liguez1 and Sharon rose tabugo1,2 Antibacterial activity of sea hare (Dolabella auricularia) egg string extracts against potentially pathogenic bacteria. 2023, Volume 24, Number 12, December 2023, Pages: 6675-6683, E-ISSN: 2085-4722.
12. Ciavatta, M. L., Lefranc, F., Carbone, M., Mollo, E., Gavagnin, M., & Kiss, R. (2017). Marine mollusk-derived agents with antiproliferative activity as promising anticancer agents. Marine Drugs, 15(10), 310. https://doi.org/10.3390/md15100310
13. D.J. Faulkner, Marine natural products, Natural Product Reports, 19 (2002), pp. 1-49
14. Dirrigl Jr, Frank J., et al., "Use of the sea hare (Aplysia fasciata) in marine pollution biomonitoring of harbors and bays." Marine Pollution Bulletin 129.2 (2018): 681-688. https://doi.org/10.1016/j.marpolbul.2017.10.056
15. Faircloth, G. and Cuevas, C. (2006). Kahalalide F and ES285: potent anticancer agents from marine molluscs. In:Cimino C, Gavagnin M (eds) Molluscs: From chemo-ecological study to biotechnological application.
16. Faircloth, G., & Cuevas, C. (2006). Kahalalide F and ES285: Potent anticancer agents from marine molluscs. Progress in Molecular and Subcellular Biology, 43, 363-379. https://doi.org/10.1007/978-3-540-30880-5_16
17. Faircloth, G., & Cuevas, C. (2021). Liposomal encapsulation of marine-derived anticancer agents. Marine Drugs, *19*(5), 278. https://doi.org/10.3390/md19050278
18. Fujiki, H., Sueoka, E., & Suganuma, M. (2018). Tumor promotion by inhibitors of protein phosphatases 1 and 2A: The okadaic acid class of compounds. Advances in Cancer Research, 117, 1-32. https://doi.org/10.1016/B978-0-12-394274-6.00001-5
19. Fujiki, H., Sueoka, E., & Suganuma, M. (2021). Protein kinase C modulators from marine sources. Advances in Cancer Research, *152*, 1-38. https://doi.org/10.1016/bs.acr.2021.03.001
20. GAVAGNIN, M., ZHANG, W., Guo, Y.W., MOLLO, E. and CIMINO, G., 2006. Chemical Studies on the South China Sea Nudibranch Dermato-bran-chus ornatus and Its Suggested Prey Gorgonian Muricella sp. Chinese Journal of Organic Chemistry, 26(12), p.1667.
21. Gomes B.S., Siqueira A.B.S., Maia R.C.C., Giampaoli V., Teixeira E.H., Arruda F.V.S., Nascimento K.S., Lima A.N., Souza-Motta C.M., Cavada B.S., et al., Antifungal activity of lectins against yeast of vaginal secretion. Braz. J. Microbiol. 2012; 43:770–778. doi: 10.1590/S1517-83822012000200042.
22. Gunasekera, S. P., Mickel, S. J., Daeffler, R., Niederer, D., & Wright, A. E. (2017). Marine natural products as leads for new pharmaceuticals. Pharmaceutical Biotechnology, 12, 1-45. https://doi.org/10.1007/978-3-319-51284-6_1
23. Haefner, B. 2003. Drugs from the deep: marine natural products as drugs candidates, Drug Discovery Today, 8: 536-544.
24. Hassan A. H. Ibrahim; Mohamed S. Amer; Hamdy O. Ahmed; Nahed A. Hassan. Antimicrobial activity of the sea hare (Aplysia fasciata) collected from the Egyptian Mediterranean Sea, Alexandria, Article 13, Volume 24, Issue 4, July and August 2020, Page 233-248 XMLPDF (899.68 K).
25. Hiroaki, S., Kazuo, T., & Nobuhiro, F. (2019). Marine lectins as antiviral agents. Current Pharmaceutical Design, 25(42), 4484-4495. https://doi.org/10.2174/1381612825666191108100031
26. Iijimaa R, Kisugi J, Yamazaki M. Biopolymers from marine invertebrates. XIV. Antifungal property of Dolabellanin A, a putative self-defense molecule of the sea hare, Dolabella auricularia. Biol Pharm Bull. 1994 Aug;17(8):1144-6. doi: 10.1248/bpb.17.1144. PMID: 7820128.
27. Iijimaa R., Kisugi J., Yamazaki M. Antifungal activity of Aplysianin E, a cytotoxic protein of sea hare (Aplysia kurodai) eggs. Dev. Comp. Immunol. 1995; 19:13–19. doi: 10.1016/0145-305x (94)00055-k.
28. Irie, T.; Suzuki, M.; Kurosawa, E.; Masamune, T. Laurinterol and Debromolaurinterol, Constituents from Laurencia intermedia. Tetrahedron Lett. 1966, 1837–1840.
29. Irie, T.; Suzuki, M.; Kurosawa, E.; Masamune, T. Laurinterol, Debromolaurinterol and Isolaurinterol, Constituents of Laurencia intermedia Yamada. Tetrahedron 1970, 26, 3271–3277.
30. Iwamoto C., Minoura K., Hagishita S., Nomoto K., Numata A. Penostatins F–I novel cytotoxic metabolites from a Penicillium species from an Enteromorpha marine alga. J. Chem Soc. Perkin Trans. I. 1998; 3:449–456.
31. Iwamoto C., Minoura K., Hagishita S., Oka T., Ohta T., Hagishita S., Numata A. Absolute sterostructures of novel penostatins A–E from a Penicillium species from an Enteromorpha marine alga. Tetrahedron. 1999; 55:14353–14368.
32. Iwamoto C., Yamada T., Ito Y., Minoura K., Numata A. Cytotoxic cytochalasans from a Penicillium species separated from a marine alga. Tetrahedron. 2001; 57:2904–2997.
33. J.W. Blunt, A.R. Carroll, B.R. Copp, R.A. Davis, R.A. Keyzers, M.R. Prinsep, Marine natural products, Natural Product Reports, 35 (1) (2018), pp. 8-53
34. Ji Hyeon Ryu, Min Seok Song, Marie Merci Nyiramana, Anjas Happy Prayoga, Dang Long Cao, Gyeong-Won Lee, Hyuk-Kwon Kwon, Dawon Kang, Sea Hare Hydrolysate Reduces PD-L1 Levels in Cancer Cells and Mitigates Rheumatoid Arthritis Ina Collagen-Induced Arthritis Mouse Model, 2024 December 2024 https://doi.org/10.1002/fsn3.4644
35. Johnson, P. M., Derby, C. D., & Kamio, M. (2023). Advances in Aplysia aquaculture for biomedical research. Aquaculture Reports, *28*, 101412. https://doi.org/10.1016/j.aqrep.2022.101412
36. Kamio, M., Grimes, T. V., Hutchins, M. H., van Dam, R., & Derby, C. D. (2010). The purple pigment aplysioviolin in sea hare ink deters predatory blue crabs through their chemical senses. Animal Behaviour, 80(1), 89-100. https://doi.org/10.1016/j.anbehav.2010.04.003
37. Kigoshi H., Imamura Y., Yoshikawa K., Yamada K. Three new cytotoxic alkaloids, aplaminone, neoaplaminone and neoaplaminone sulfate from the marine mollusc Aplysia kurodai. Tetrahedron Lett. 1990; 31:4911–4914. doi: 10.1016/S0040-4039(00)97766-9. [DOI] [Google Scholar]
38. Lee WW, Kim WS, Ahn G, Kim KN, Heo SJ, Cho M, Fernando IP, Kang N, Jeon YJ. Separation of glycine-rich proteins from sea hare eggs and their anti-cancer activity against U937 leukemia cell line. EXCLI J. 2016 Jun 1; 15:329-42. doi: 10.17179/excli2016-293. PMID: 27366143; PMCID: PMC4928013.
39. Lever R., Page C. Glycosaminoglycans, airways inflammation and bronchial hyperresponsiveness. Pulm. Pharmacol. Ther. 2001; 14:249–254. doi: 10.1006/pupt.2001.0296. [DOI] [PubMed] [Google Scholar]
40. Li, X., Li, G., Wang, W., & Zhang, Y. (2023). Structural modification of aplysiatoxin derivatives for reduced toxicity. Bioorganic & Medicinal Chemistry, *78*, 117147. https://doi.org/10.1016/j.bmc.2022.117147
41. Li, X., Li, X., Li, G., & Wang, W. (2020). Aplysiasecosterol A, a new secosteroid from the sea hare Aplysia kurodai with inhibitory activity against LPS-induced inflammatory responses in RAW264.7 cells. Bioorganic Chemistry, 104, 104266. https://doi.org/10.1016/j.bioorg.2020.104266
42. Liu, Y., Li, X., & Wang, G. (2021). Biosynthesis of marine natural products from mollusks. Marine Drugs, 19(5), 255. https://doi.org/10.3390/md19050255
43. Liu, Y., Li, X., & Wang, G. (2022). Heterologous expression of marine mollusk biosynthetic pathways. Metabolic Engineering, *70*, 12-25. https://doi.org/10.1016/j.ymben.2022.01.001
44. Lucy,2016, https://thefishsite.com/articles/sea-hare-one-of-the-fastest-growing-utilitarian-additions-to-clear-water-marine-aquaculture-systems
45. Margaret A. Davies, Postsynaptic pharmacology of psychoactive substances in Aplysia californica, Brain Research Bulletin, Volume 6, Issues 4–6, 1981, Pages 495-502, ISSN 0361-9230, https://doi.org/10.1016/S0361-9230(81)80024-X.
46. Miyamoto T., Higuchi R., Komori T., Fujioka T., Mihashi K. Isolation and structures of aplykurodins a and b, two new isoprenoids from the marine mollusk Aplysia kurodai. Tetrahedron Lett. 1986; 27:1153–1156. doi: 10.1016/S0040-4039(00)84203-3. [DOI] [Google Scholar]
47. Miyamoto T., Higuchi R., Marubayashi N., Komori T. Studies on the constituents of marine opisthobranchia, iv. Two new polyhalogenated monoterpenes from the sea hare Aplysia kurodai. Liebigs Ann. Chem. 1988; 1988:1191–1193. [Google Scholar]
48. Mona, M.H.; Salem, M.L.; Basiony, M.A. and Ziada, M.A. (2016). In vitro antitumor effects of egg extract and purple fluid from marine Aplysia fasciata. BFSZU, 38: 194-206.
49. Moroz, L. L., Romanova, D. Y., & Kohn, A. B. (2023). Aplysia genomics and drug discovery. Annual Review of Marine Science, *15*, 431-455. https://doi.org/10.1146/annurev-marine-032122-104210
50. Nyiramana MM, Cho SB, Kim EJ, Kim MJ, Ryu JH, Nam HJ, Kim NG, Park SH, Choi YJ, Kang SS, Jung M, Shin MK, Han J, Jang IS, Kang D. Sea Hare Hydrolysate-Induced Reduction of Human Non-Small Cell Lung Cancer Cell Growth through Regulation of Macrophage Polarization and Non-Apoptotic Regulated Cell Death Pathways. Cancers (Basel). 2020 Mar 19;12(3):726. doi: 10.3390/cancers12030726. PMID: 32204484; PMCID: PMC7140097.
51. Ojika M., Yoshida Y., Okumura M., Ieda S., Yamada K. Aplysiadiol, a new brominated diterpene from the marine mollusc aplysia kurodai. J. Nat. Prod. 1990; 53:1619–1622. doi: 10.1021/np50072a042. [DOI] [Google Scholar]
52. Oliveira, Andreia & Lobo-da-Cunha, Alexandre & Taveira, Marcos & Ferreira, Marta & Valentão, Patrícia & Andrade, Paula. (2015). Digestive Gland from Aplysia depilans Gmelin: Leads for Inflammation Treatment. Molecules (Basel, Switzerland). 20. 15766-80. 10.3390/molecules200915766.
53. Pereira RB, Andrade PB, Valentão P. Chemical Diversity and Biological Properties of Secondary Metabolites from Sea Hares of Aplysia Genus. Mar Drugs. 2016 Feb 19;14(2):39. doi: 10.3390/md14020039. PMID: 26907303; PMCID: PMC4771992.
54. Pereira RB, Pereira DM, Jiménez C, Rodríguez J, Nieto RM, Videira RA, Silva O, Andrade PB, Valentão P. Anti-Inflammatory Effects of 5α,8α-Epidioxycholest-6-en-3β-ol, a Steroidal Endoperoxide Isolated from Aplysia depilans, Based on Bioguided Fractionation and NMR Analysis. Mar Drugs. 2019 Jun 3;17(6):330. doi: 10.3390/md17060330. PMID: 31163615; PMCID: PMC6628248.
55. Pereira, R. B., Andrade, P. B., & Valentão, P. (2022). Sustainable sourcing of marine invertebrates for drug discovery. Frontiers in Marine Science, *9*, 847764. https://doi.org/10.3389/fmars.2022.847764
56. Pereira, Renato & Taveira, Marcos & Valentão, Patrícia & Sousa, Carla & Andrade, Paula. (2014). Fatty acids from edible sea hares: Anti-inflammatory capacity in LPS-stimulated RAW 264.7 cells involve iNOS modulation. RSC Adv. 5. 10.1039/C4RA14333G.
57. Ruaza JRFC. 2022. Lethality and antimicrobial screening of sea hare (Dolabella auricularia) ink against the fish pathogens. Uttar Pradesh J Zool 43 (21): 51-57. DOI: 10.56557/upjoz/2022/v43i213212
58. Ruperez P., Moya A., Leal J.A. Cell wall polysaccharides from Talaromyces species. Arch. Microbiol. 1986; 146:250–255. doi: 10.1007/BF00403225.
59. Sethi, Dr.S.N. & Ranjith, L. & Kannan, Karuppiah. (2014). Occurrences of Wedge Sea Hare, Dolabella auricularia (Lightfoot, 1786) from Kayalpatinam , Gulf of Mannar, Tamil Nadu, India. Indian Journal of Geo-Marine Sciences. 48.
60. Sharon-Asa, L., Elazar, M., & Ben-Tal, N. (2023). CRISPR applications in marine biotechnology. Trends in Biotechnology, *41*(3), 356-371. https://doi.org/10.1016/j.tibtech.2022.09.014
61. Shaw, P.D., W.O. McLure, G. Van Blaricom, J. Sims,W. Fenical . Rude, 1976. Anti-microbial activities from marine organisms. In: Food – drug from sea Proceedings, 25: 55-60.
62. Simonaro C.M., D’Angelo M., He X., Eliyahu E., Shtraizent N., Haskins M.E., Schuchman E.H. Mechanism of glycosaminoglycan-mediated bone and joint disease: Implications for the mucopolysaccharidoses and other connective tissue diseases. Am. J. Pathol. 2008; 172:112–122. doi: 10.2353/ajpath.2008.070564. [DOI] [PMC free article] [PubMed] [Google Scholar]Springer, Berlin, Germany. pp. 363–379.
63. Suárez, Y., González, L., & Cuadrado, A. (2022). Pharmacokinetic optimization of marine-derived anticancer peptides. Marine Drugs, *20*(7), 459. https://doi.org/10.3390/md20070459
64. Suárez, Y., González, L., Cuadrado, A., & Berciano, M. (2019). Kahalalide F, a marine-derived compound for cancer treatment. Marine Drugs, 17(12), 689. https://doi.org/10.3390/md17120689
65. Swarna RR, Asaduzzaman AKM, Kabir SR, Arfin N, Kawsar SMA, Rajia S, Fujii Y, Ogawa Y, Hirashima K, Kobayashi N, Yamada M, Ozeki Y, Hasan I. Antiproliferative and Antimicrobial Potentials of a Lectin from Aplysia kurodai (Sea Hare) Eggs. Mar Drugs. 2021 Jul 14;19(7):394. doi: 10.3390/md19070394.
66. The odd wedge sea hare is useful as an ‘algae cleaner’, May 2016 Dr. Bill McGraw. Global sea food alliance. https://www.globalseafood.org/advocate/the-odd-wedge-sea-hare-is-useful-as-an-algae-cleaner/
67. Tsukamoto, S., Yamashita, Y., & Ohta, T. (2005). New Cytotoxic and Antibacterial Compounds Isolated from the Sea Hare, Aplysia kurodai. Marine Drugs, 3(2), 22-28. https://doi.org/10.3390/md302022
68. TW Abrams, 2012. Studies on Aplysia neurons suggests treatment for chronic disorders. Department of Pharmacology, Program in Neuroscience, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201-1559, USA.
69. Yamada, K., Ikeda, T., & Fujita, M. (2023). PEGylation strategies for marine natural products. Bioconjugate Chemistry, *34*(2), 287-301. https://doi.org/10.1021/acs.bioconjchem.2c00512
70. Yamazaki, M. (1993). Antitumor and antimicrobial glycoproteins from sea hares. Compar. Biochem. Physiol. Part C: Compar. Pharmacol., 105(2): 141-146.
71. Yang, H., Johnson, P. M., Ko, K.-C., Kamio, M., Germann, M. W., Derby, C. D., & Tai, P. C. (2018). Cloning, characterization and expression of escapin, a broadly antimicrobial L-amino acid oxidase from the sea hare Aplysia californica. Journal of Experimental Biology, 211(17), 2789-2799. https://doi.org/10.1242/jeb.015669
72. Yoon B., Choi B., Choi Y. Extraction of glycosaminoglycan from sea hare, Aplysia kurodai, and its functional properties 1. Optimum extraction of polysaccharide and purification of glycosaminoglycan. J. Korean Soc. Food Sci. Nutr. 2010; 39:1640–1646. doi: 10.3746/jkfn.2010.39.11.1640. [DOI] [Google Scholar]
73. Zapata A., Amemiya C.T., Microb Immun 248 (2000) 67-107.
74. Zhang, J., Li, Y., & Tang, Y. (2023). Cell-free synthesis of marine-derived therapeutics. Nature Biotechnology, *41*(1), 78-89. https://doi.org/10.1038/s41587-022-01486-w