“Biogenic Synthesis Of Silver Nanoparticles Usingporphyra Indica&Gracilaria Salicornia:Chemical And Pharmacological Potentials And Applications"

  • Malikka.B
  • Yokeswari Nithya P
Keywords: Antibacterial; Electro chemical analysis; Biosynthesis; Silver oxide nanoparticles

Abstract

Nanotechnology is making significant strides in agriculture, feed, and food technology, yet biosynthesis of silver oxide nanoparticles (Ag2O NPs) remains underexplored. In this study, Ag2O NPs were synthesized using red algae species Porphyra indica and Gracilaria salicornia, and their antibiofilm and electrochemical properties were evaluated. The UV-visible spectrum revealed characteristic absorption peaks at 280 nm and 290 nm. X-ray diffraction analysis confirmed the face-centered cubic crystalline structure of Ag₂O NPs, with a narrow peak indicating high crystallinity. High-resolution Transmission Electron Microscopy (HR-TEM) revealed nanotube and cubic morphologies, ranging from 7.71 to 7.86 nm in diameter. Fourier transform infrared spectroscopy (FTIR) identified functional groups corresponding to metabolites in the algae supernatant. The biosynthesized silver oxide nanoparticles (Ag2O NPs) demonstrated significant antibacterial activity against marine biofilm-forming bacteria and several common pathogenic strains, including Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Bacillus cereus, and Pseudomonas aeruginosa. This was confirmed through observations made using confocal laser scanning microscopy (CLSM). Additionally, the Ag2O NPs demonstrated enhanced electrochemical sensing properties, particularly for physiological pH detection. This study underscores the potential of Ag2O NPs in antibacterial applications and electrochemical technologies.

Author Biographies

Malikka.B

Research Scholar (Reg-21212012032001), PG& Research Departmrnt of chemistry, A.P.C Mahalaxmi College for women, Thoothukudi, Affiliated to Manonmaniam sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India

Yokeswari Nithya P

Assistant Professor of Chemistry, PG & Research Department of Chemistry, A.P.C. Mahalaxmi College for Women, Thoothukudi. Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India.

References

1. Afrin, F., et al.2023 "Evaluation of antioxidant and antibacterial activities of some selected seaweeds from Saint Martin's Island of Bangladesh." Food Chemistry Advances 3 (2023): 100393.
2. Aiswarya Devi S, Harshiny M, Udaykumar S, et al (2017) Strategy of metal iron doping and greenmediatedZnO nanoparticles: Dissolubility, antibacterial and cytotoxic traits. Toxicol. Res. 6:854–865. https://doi.org/10.1039/c7tx00093f
3. Amreen Shah et al.,2019,Photocatalytic and antibacterial activities of Paeonia emodi mediated silver oxide nanoparticles,https://doi.org/10.1088/2053-1591/aafd42
4. B. N. Rashmi et al.,(2019),Facile Green synthesis of Silver Oxide Nanoparticles and their Electrochemical, Photocatalytic and Biological Studies, https://doi.org/10.1016/j.inoche.2019.107580
5. B.S. Narendar, V. Kumar, M. Tomar, V. Gupta, S.K. Singh, Multifunctional CuO nanosheets for high-performance supercapacitor electrodes with enhanced photocatalytic activity, J. Inorg.Organomet.Polym.Mater.29 (2019) 1067–1075, https://doi.org/10.1007/s10904-018-0995-4.
6. Debasish Borah et al.,2020. Alga-mediated facile green synthesis of silver nanoparticles: Photophysical, catalytic and antibacterial activity,https://doi.org/10.1002/aoc.5597
7. El-Ghmari, Brahim, Hanane Farah, and Abdellah Ech-Chahad.,2021 "A new approach for the green biosynthesis of Silver Oxide nanoparticles Ag2O, characterization and catalytic application." Bulletin of Chemical Reaction Engineering & Catalysis 16.3 (2021): 651-660.
8. Franci, G. et al. Silver nanoparticles as potential antibacterial agents. Molecules20, 8856–8874.https://doi.org/10.3390/molecules2 0058856 (2015).
9. Gurunathan, S., Han, J. W., Kwon, D. N. & Kim, J. H. Enhanced antibacterial and anti-bioflm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanosc. Res. Lett. 9, 373. https://doi.org/10.1186/1556-276X-9-373 (2014)
10. Harshiny Muthukumar et al., 2021, Photocatalytic degradation of caffeine and E. coli inactivation using silver oxide nanoparticles obtained by a facile green co-reduction method, https://doi.org/10.1007/s10098-021-02135-7
11. Hudzicki, Jan.,2009 "Kirby-Bauer disk diffusion susceptibility test protocol." American society for microbiology 15.1 (2009): 1-23.
12. J. M. Zen, A. S. Kumar, and D. M. Tsai, Electroanalysis 15 (2003) 1073.Anal.Bioanal.Electrochem., Vol. 5, No. 4,, 2013, 455 - 466
13. J. Saraniya Devi,and B. Valentin Bhimba (2012),Anticancer Activity of Silver Nanoparticles Synthesized by the Seaweed UlvalactucaInvitro, http://dx.doi.org/10.417 2/scientificreports.242
14. Kahru A, Dubourguier HC (2010) From ecotoxicology to nanoecotoxicology. Toxicology 269:105–119. https://doi.org/10.1016/j.tox.2009.08.016
15. Kuo-Sheng Hsu. et al 2022, Cancer cell survival depends on collagen uptake into tumor-associated stroma, https://doi.org/10.1038/s41467-022-34643-5
16. Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramfrez, J.T., Yacaman, M.J., 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–2353.
17. Pugazhendhi A, Prabakar D, Jacob JM, et al (2018) Synthesis and characterization of silver nanoparticles using Gelidiumamansiiand its antimicrobial property against various pathogenic bacteria. Microb.Pathog. 114:41–45. https://doi.org/10.1016/j.micpath.2017.11.013
18. Rajendrachari, Shashanka, et al.,2013, "Synthesis of silver nanoparticles and their applications." Anal. Bioanal. Electrochem 5.4 (2013): 455-466.
19. S. Reddy, B. E. K. Swamy, and H. Jayadevappa, Electrochim. Acta61 (2012) 78.
20. S. Reddy, B. E. K. Swamy, B. N. Chandrashekar, S. Chitravathi, and H. Jayadevappa. Anal.Bioanal.Electrochem.4 (2012) 186.
21. S. Reddy, B. E. K. Swamy, U. Chandra, B. S. Sherigara, and H. Jayadevappa, Int. J. Electrochem. 5 (2010) 10.
22. S. Reddy, B. E. K. Swamy, U. Chandra, K. R. Mahathesha, T. V. Sathish, and H.Jayadevappa, Anal. Met.3 (2011) 2792.
23. Schröfel A, Kratošová G, Šafařík I, et al (2014) Applications of biosynthesized metallic nanoparticles - A review. ActaBiomaterialia 10:4023–4042. https://doi.org/10.1016/j.actbio.2014.05.022
24. SeerangarajVasantharaj et al 2021, Enhanced photocatalytic degradation of water pollutants using bio-green synthesis of zinc oxide nanoparticles (ZnO NPs),Journal of Environmental Chemical Engineering 9 (2021) 105772,www.elsevier.com/locate/jece.
25. Shanmuganathan R, MubarakAli D, Prabakar D, et al (2018) An enhancement of antimicrobial efficacy of biogenic and ceftriaxone-conjugated silver nanoparticles: green approach. Environ. Sci. Pollut. Res.25:10362–10370. https://doi.org/10.1007/s11356-017-9367-9
26. Shashanka Rajendrachari et al.,2013, Synthesis of Silver Nanoparticles and their Applications, https://www.researchgate.net/publication/262116441Debasish Borah et,all.,2020 Alga-mediated facile green synthesis of silver nanoparticles: Photophysical, catalytic and antibacterial activity,https://doi.org/10.1002/aoc.5597
27. Sondi, I., Salopek-Sondi, B., 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J. Colloids Interface Sci. 275, 177–182.
28. Vardanyan, Z., Gevorkyan, V., Ananyan, M., Vardapetyan, H. &Trchounian, A. Efects of various heavy metal nanoparticles on Enterococcus hirae and Escherichia coli growth and proton-coupled membrane transport. J. Nanobiotechnol. 13, 69.https://doi. org/10.1186/s12951-015-0131-3 (2015).
29. Wang W, Arshad MI, Khurshid M, et al (2018) Antibiotic resistance: a rundown of a globalcrisis. Infect. Drug. Resist. 1645–1658.
Published
2024-12-30
How to Cite
Malikka.B, & Yokeswari Nithya P. (2024). “Biogenic Synthesis Of Silver Nanoparticles Usingporphyra Indica&Gracilaria Salicornia:Chemical And Pharmacological Potentials And Applications". Revista Electronica De Veterinaria, 25(2), 1509-1519. https://doi.org/10.69980/redvet.v25i2.1866