Green Synthesis Of Silver Nanoparticles From Stylosanthes Hamata (L.) Taub. Characterization And Its Antimicrobial Potential

  • Mukeshbabu. N
  • Mary Kensa V
Keywords: Green synthesis of silver nanoparticles; Stylosanthes hamata (L.) Taub., antimicrobial activity

Abstract

Among various noble metal nanoparticles, silver nanoparticles (AgNPs) have garnered significant attention due to their unique characteristics, including excellent electrical conductivity, chemical stability, as well as catalytic and antibacterial properties. The green synthesis of silver nanoparticles utilizing plant extracts rich in phytochemical compounds has gained widespread interest. This eco-friendly method is not only more biocompatible and cost-effective but also holds potential for large-scale production. The present study approved the ability of Stylosanthes hamata (L.) Taub. Plant extract for the synthesis of silver nanoparticles for the first time. The green synthesis silver nanoparticles were characterized using a UV-visible spectrophotometer, Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray analysis (EDX). The synthesized silver nanoparticles exhibited a crystalline structure with spherical shaped along with some irregular shapes with an average size of 5 to 100 nm. and a maximum absorbance at 422 nm. The synthesized silver nanoparticles were evaluated for antimicrobial activity. The result showed that the silver nanoparticles of S. hamata effectively inhibited Klebsiella pneumonia, Lactobacillus acidophilus, Staphylococcus aureus, and Pencillium notatum growth with a maximum inhibition zone of 16 mm, 16mm, 14 mm, and 13 mm, respectively. The study demonstrates the effectiveness of S. hamata in the green synthesis of silver nanoparticles, which exhibited notable antimicrobial activity. This research underscores the potential of plant-mediated synthesis for developing eco-friendly antimicrobial agents.

Author Biographies

Mukeshbabu. N

Research Scholar, Department of Botany, S.T. Hindu College, Nagercoil, Affiliated to MS University, Tirunelveli, Tamil Nadu, India-629002. 

Mary Kensa V

 Associate Professor, Department of Botany, S.T. Hindu College, Nagercoil, Affiliated to MS University, Tirunelveli, Tamil Nadu, India-629002

References

1. Kathiravan, A., Udayan, E., Rajeshkumar, S., & Gnanadoss, J. J. (2023). Unveiling the Biological Potential of Mycosynthesized Selenium Nanoparticles from Endophytic Fungus Curvularia sp. LCJ413. BioNanoScience, 13(4), 2232-2251.
2. Asif, M., Yasmin, R., Asif, R., Ambreen, A., Mustafa, M., & Umbreen, S. (2022). Green synthesis of silver nanoparticles (AgNPs), structural characterization, and their antibacterial potential. Dose-Response, 20(2), 15593258221088709.
3. Hashmi, S. S., Ibrahim, M., Adnan, M., Ullah, A., Khan, M. N., Kamal, A., ... & Zaman, W. (2024). Green synthesis of silver nanoparticles from Olea europaea L. extracted polysaccharides, characterization, and its assessment as an antimicrobial agent against multiple pathogenic microbes. Open Chemistry, 22(1), 20240016.
4. Soliman, M. K., Hashem, A. H., Al-Askar, A. A., AbdElgayed, G., & Salem, S. S. (2024). Green synthesis of silver nanoparticles from Bauhinia variegata and their biological applications. Green Processing and Synthesis, 13(1), 20240099.
5. Alharbi, N. S., Alsubhi, N. S., & Felimban, A. I. (2022). Green synthesis of silver nanoparticles using medicinal plants: Characterization and application. Journal of Radiation Research and Applied Sciences, 15(3), 109-124.
6. Sagar, P. V., Ramadevi, D., Basavaiah, K., & Botsa, S. M. (2024). Green synthesis of silver nanoparticles using aqueous leaf extract of Saussurea obvallata for efficient catalytic reduction of nitrophenol, antioxidant, and antibacterial activity. Water Science and Engineering, 17(3), 274-282.
7. Ejaz, U., Afzal, M., Mazhar, M., Riaz, M., Ahmed, N., Rizg, W. Y., ... & Yean, C. Y. (2024). Characterization, synthesis, and biological activities of silver nanoparticles produced via green synthesis method using Thymus vulgaris aqueous extract. International Journal of Nanomedicine, 453-469.
8. Soliman, M. K., Hashem, A. H., Al-Askar, A. A., AbdElgayed, G., & Salem, S. S. (2024). Green synthesis of silver nanoparticles from Bauhinia variegata and their biological applications. Green Processing and Synthesis, 13(1), 20240099.
9. Dipankar, C., & Murugan, S. (2012). The green synthesis, characterization and evaluation of the biological activities of silver nanoparticles synthesized from Iresine herbstii leaf aqueous extracts. Colloids and surfaces B: biointerfaces, 98, 112-119.
10. Singh, R. K., Nallaswamy, D., Rajeshkumar, S., & Varghese, S. S. (2025). Green synthesis of silver nanoparticles using neem and turmeric extract and its antimicrobial activity of plant mediated silver nanoparticles. Journal of Oral Biology and Craniofacial Research, 15(2), 395-401.
11. Tesfaye, M., Gonfa, Y., Tadesse, G., Temesgen, T., & Periyasamy, S. (2023). Green synthesis of silver nanoparticles using Vernonia amygdalina plant extract and its antimicrobial activities. Heliyon, 9(6).
12. Prathibha, B. S., Harshitha, N., Neha, D. R., Pranathi, C. N., Kumar, D. V., & Lakshmi, G. C. (2024, April). Green synthesis of silver nanoparticles using Ocimum tenuiflorum and Azadirachta indica leaf extract and their antibacterial activity. In Journal of Physics: Conference Series (Vol. 2748, No. 1, p. 012015). IOP Publishing.
13. Jamil, Y. M., Al-Hakimi, A. N., Al-Maydama, H. M., Almahwiti, G. Y., Qasem, A., & Saleh, S. M. (2024). Optimum green synthesis, characterization, and antibacterial activity of silver nanoparticles prepared from an extract of Aloe fleurentinorum. International Journal of Chemical Engineering, 2024(1), 2804165.
14. Alex, A. M., Subburaman, S., Chauhan, S., Ahuja, V., Abdi, G., & Tarighat, M. A. (2024). Green synthesis of silver nanoparticle prepared with Ocimum species and assessment of anticancer potential. Scientific Reports, 14(1), 11707.
15. Rana, A., Kumari, A., Chaudhary, A. K., Srivastava, R., Kamil, D., Vashishtha, P., & Sharma, S. N. (2023). An investigation of antimicrobial activity for plant pathogens by green-synthesized silver nanoparticles using Azadirachta indica and Mangifera indica. Physchem, 3(1), 125-146.
16. Sadeghi, B., & Gholamhoseinpoor, F. (2015). A study on the stability and green synthesis of silver nanoparticles using Ziziphora tenuior (Zt) extract at room temperature. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 134, 310-315.
17. Kohner PC, Rosenblatt JE, Cockerill FR.1994. Comparison of agar dilution, broth dilution and disk diffusion testing of Ampicillin against Haemophilus spp. by using in house and commercially prepared media J. Clin. Microbiol. 32, 1594 -96.
18. Mathabe M.C., Nikolova R.V., Lall N., Nyazema N.Z.Antibacterial activities of medicinal plants used for the treatment of diarrhoea in Limpopo Province, South Africa, Journal of Ethnopharmacology, 105 (2006), pp. 286-293.
19. Bauer A W, Kirby W M M, Sherris J C & Turck M. Antibiotic susceptibility testing by a standardized single disk method. Amer. I. C/in. Pathol. 45:493-6, 1966. [Depts. Microbiology and Medicine, Univ. Washington, Sch. Med., Seattle. WA]
20. Hussein, H. G., El-Sayed, E. S. R., Younis, N. A., Hamdy, A. E. H. A., and Easa, S. M. (2022). Harnessing endophytic fungi for biosynthesis of selenium nanoparticles and exploring their bioactivities. AMB Express, 12(1), 1-16.
21. Pandian, A. M. K., Karthikeyan, C., Rajasimman, M., & Dinesh, M. G. (2015). Synthesis of silver nanoparticle and its application. Ecotoxicology and environmental safety, 121, 211-217.
22. Salayová, A., Bedlovičová, Z., Daneu, N., Baláž, M., Lukáčová Bujňáková, Z., Balážová, Ľ., & Tkáčiková, Ľ. (2021). Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and antibacterial efficacy. Nanomaterials, 11(4), 1005.
23. Mathew, S., Victorio, C. P., Sidhi, J., & BH, B. T. (2020). Biosynthesis of silver nanoparticle using flowers of Calotropis gigantea (L.) WT Aiton and activity against pathogenic bacteria. Arabian Journal of Chemistry, 13(12), 9139-9144..
24. Nahar, K., Yang, D. C., Rupa, E. J., Khatun, M., & Al-Reza, S. M. (2020). Eco-friendly synthesis of silver nanoparticles from Clerodendrum viscosum leaf extract and its antibacterial potential. Nanomedicine Research Journal, 5(3), 276-287.
25. Widatalla, H. A., Yassin, L. F., Alrasheid, A. A., Ahmed, S. A. R., Widdatallah, M. O., Eltilib, S. H., & Mohamed, A. A. (2022). Green synthesis of silver nanoparticles using green tea leaf extract, characterization and evaluation of antimicrobial activity. Nanoscale Advances, 4(3), 911-915
26. Kumar S, Kalita S, Das A, Kumar P, Singh S, Katiyar V. 2022. Aloe vera: A contemporary overview on scope and prospects in food preservation and packaging. Progress in Organic Coatings. 166:106799.
27. Paul, W, Sharma, CP. 2020. Inorganic nanoparticles for targeted drug delivery. Biointegration of medical implant materials.333-73.
28. Shukla, A., & Makwana, B. A. (2014). Facile synthesis of silver nanoparticle and their potential application. Am J Nanosci Nanotechnol, (4), 84-92.
29. Murugan, K., Senthilkumar, B., Senbagam, D., & Al-Sohaibani, S. (2014). Biosynthesis of silver nanoparticles using Acacia leucophloea extract and their antibacterial activity. International Journal of Nanomedicine. 2431-2438.
30. Banerjee, P., Satapathy, M., Mukhopahayay, A., & Das, P. (2014). Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: synthesis, characterization, antimicrobial property and toxicity analysis. Bioresources and Bioprocessing, 1, 1-10.
31. Govindasamy, R., Muthu, T., Govindarasu, M., Thandapani, G., Ill-Min, C., 2018. Green Approach for Synthesis of Zinc Oxide Nanoparticles from Andrographis paniculata Leaf Extract and Evaluation of Their Antioxidant, Anti-Diabetic, and AntiInflammatory Activities. Biopro. Biosyst. Eng. 41, 21–30.
32. Bachheti, R.K., Konwarh, R., Gupta, V., Husen, A., Joshi, A., 2019. Green Synthesis of Iron Oxide Nanoparticles: Cutting Edge Technology and Multifaceted Applications. In In Nanomaterials and Plant Potential; Husen, A., Iqbal, M., Eds.; Springer, Cham, 239–259.
33. Hemlata, M.P.R., Singh, A.P., Tejavath, K.K., 2020. Biosynthesis of Silver Nanoparticles Using Cucumis prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity against Cancer Cell Lines. ACS Omega 5, 5520–5528
34. Xu, L., Wang, Y.Y., Huang, J., Chen, C.Y., Wang, Z.X., Xie, H., 2020. Silver Nanoparticles: Synthesis, Medical Applications and Biosafety. Theranostics 10, 8996–9031.
35. Ammulu, M.A., Vinay, V.K., Giduturi, A.K., Vemuri, P.K., Mangamuri, U., Poda, S., 2021. Phytoassisted Synthesis of Magnesium Oxide Nanoparticles from Pterocarpus marsupium Rox.b Heartwood Extract and Its Biomedical Applications. J. Genet. Eng. Biotechnol. 19, 1–18.
36. Montes-Garcia, V., Squillaci, M.A., Diez-Castellnou, M., Ong, Q.K., Stellacci, F., Samorì, P. 2021. Chemical Sensing with Au and Ag Nanoparticles. Chem. Soc. Rev. 50, 1269–1304
37. Palithya, S., Gaddam, S. A., Kotakadi, V. S., Penchalaneni, J., Golla, N., Krishna, S. B. N., & Naidu, C. V. (2022). Green synthesis of silver nanoparticles using flower extracts of Aerva lanata and their biomedical applications. Particulate Science and Technology, 40(1), 84-96.
Published
2024-12-07
How to Cite
Mukeshbabu. N, & Mary Kensa V. (2024). Green Synthesis Of Silver Nanoparticles From Stylosanthes Hamata (L.) Taub. Characterization And Its Antimicrobial Potential. Revista Electronica De Veterinaria, 25(2), 1426-1435. https://doi.org/10.69980/redvet.v25i2.1829