Emerging Trends in Drug Discovery for Respiratory Disorders: Innovations and Future Prospects

  • Roshmi Ray
  • Nutan Sharma
  • Manish Kumar
  • Shikha Rathi
  • Mukesh Sharma
Keywords: Precision medicine, biologic therapies, regenerative medicine, microbiome-based interventions, AI-driven drug discovery.

Abstract

The field of respiratory medicine has seen significant advancements in drug discovery, leading to more targeted and effective treatment options for conditions such as asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and pneumonia. Traditional therapies, including corticosteroids and bronchodilators, primarily focus on symptom management rather than addressing the underlying causes of these diseases. However, emerging trends such as precision medicine, biologic therapies, regenerative medicine, microbiome-based interventions, and artificial intelligence (AI)-driven drug discovery are revolutionizing respiratory disease management by offering personalized and disease-specific treatments.Precision medicine utilizes biomarkers to tailor therapies according to an individual’s genetic and molecular profile, improving treatment efficacy and minimizing side effects. Biologic therapies, particularly monoclonal antibodies, have shown great promise in modulating immune responses and targeting specific inflammatory pathways, leading to improved disease control. Regenerative medicine, including stem cell-based therapies, aims to repair lung tissue damage, offering potential breakthroughs for chronic and progressive respiratory diseases. The microbiome has emerged as a critical factor in respiratory health, with microbiome-targeted therapies such as probiotics, prebiotics, and fecal microbiota transplantation (FMT) being explored to restore microbial balance and enhance immune function.AI-driven drug discovery is accelerating the identification of novel therapeutic agents and repurposing existing drugs for respiratory conditions. AI technologies, including machine learning and big data analytics, streamline drug screening, predict treatment responses, and optimize clinical trials, reducing the time and cost associated with drug development. Despite these advances, challenges such as treatment costs, long-term safety concerns, regulatory hurdles, and patient variability must be addressed before widespread clinical adoption. As research continues to advance, these innovations hold the potential to transform respiratory medicine, providing more effective, personalized, and accessible treatment options that improve patient outcomes and quality of life.

Author Biographies

Roshmi Ray

Associate Professor, Sri Sukhmani Institute of Pharmacy, Dera Bassi

Nutan Sharma

Associate Professor, Sri Sukhmani Institute of Pharmacy, Dera Bassi

Manish Kumar

Assistant Professor, Sri Sukhmani Institute of Pharmacy, Dera Bassi

Shikha Rathi

Associate Professor, Sri Sukhmani Institute of Pharmacy, Dera Bassi

Mukesh Sharma

Assistant Professor, Sri Sukhmani Institute of Pharmacy, Dera Bassi

References

1. Ho, D., Quake, S. R., McCabe, E. R., Chng, W. J., Chow, E. K., Ding, X., ... & Zarrinpar, A. (2020). Enabling technologies for personalized and precision medicine. Trends in biotechnology, 38(5), 497-518.
2. Jain, P., Samantaray, S. S., Ayaz, A., & Aggarwal, S. (2024). Biomarkers of respiratory diseases. In Biological Insights of Multi-Omics Technologies in Human Diseases (pp. 363-387). Academic Press.
3. Mosbech, C. H., Godtfredsen, N. S., Ulrik, C. S., & Westergaard, C. G. (2023). Biomarker-guided withdrawal of inhaled corticosteroids in asthma patients with a non-T2 inflammatory phenotype–a randomized controlled trial study protocol. BMC Pulmonary Medicine, 23(1), 372.
4. Franssen, F. M., Alter, P., Bar, N., Benedikter, B. J., Iurato, S., Maier, D., ... & Schmeck, B. (2019). Personalized medicine for patients with COPD: where are we?. International journal of chronic obstructive pulmonary disease, 1465-1484.
5. Ballester, B., Milara, J., & Cortijo, J. (2019). Idiopathic pulmonary fibrosis and lung cancer: mechanisms and molecular targets. International journal of molecular sciences, 20(3), 593.
6. Lyly, A., Laulajainen-Hongisto, A., Gevaert, P., Kauppi, P., & Toppila-Salmi, S. (2020). Monoclonal antibodies and airway diseases. International Journal of Molecular Sciences, 21(24), 9477.
7. Matera, M. G., Page, C., Rogliani, P., Calzetta, L., & Cazzola, M. (2016). Therapeutic monoclonal antibodies for the treatment of chronic obstructive pulmonary disease. Drugs, 76(13), 1257-1270.
8. McGregor, M. C., Krings, J. G., Nair, P., & Castro, M. (2019). Role of biologics in asthma. American journal of respiratory and critical care medicine, 199(4), 433-445.
9. Pavord, I. D. (2018). Biologics and chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 141(6), 1983-1991.
10. Chakraborty, A., & Royce, S. G. (2020). Use of biologics in the treatment of asthma, COPD, ACOS, and idiopathic pulmonary fibrosis. In Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems (pp. 97-115). Academic Press.
11. O'Brien, T., & Barry, F. P. (2009, October). Stem cell therapy and regenerative medicine. In Mayo Clinic Proceedings (Vol. 84, No. 10, pp. 859-861). Elsevier.
12. Adamič, N., & Vengust, M. (2023). Regenerative medicine in lung diseases: A systematic review. Frontiers in veterinary science, 10, 1115708.
13. Harrell, C. R., Sadikot, R., Pascual, J., Fellabaum, C., Jankovic, M. G., Jovicic, N., ... & Volarevic, V. (2019). Mesenchymal stem cell‐based therapy of inflammatory lung diseases: current understanding and future perspectives. Stem cells international, 2019(1), 4236973.
14. Hawkins, F., & Kotton, D. N. (2015). Embryonic and induced pluripotent stem cells for lung regeneration. Annals of the American Thoracic Society, 12(Supplement 1), S50-S53.
15. Tzouvelekis, A., Ntolios, P., & Bouros, D. (2013). Stem cell treatment for chronic lung diseases. Respiration, 85(3), 179-192.
16. Kim, C. F. (2017). Intersections of lung progenitor cells, lung disease and lung cancer. European Respiratory Review, 26(144).
17. Chen, Y. T., Miao, K., Zhou, L., & Xiong, W. N. (2021). Stem cell therapy for chronic obstructive pulmonary disease. Chinese Medical Journal, 134(13), 1535-1545.
18. Barczyk, M., Schmidt, M., & Mattoli, S. (2015). Stem cell-based therapy in idiopathic pulmonary fibrosis. Stem Cell Reviews and Reports, 11(4), 598-620.
19. Qin, H., & Zhao, A. (2020). Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics. Protein & cell, 11(10), 707-722.
20. Hayes Jr, D., Kopp, B. T., Hill, C. L., Lallier, S. W., Schwartz, C. M., Tadesse, M., ... & Reynolds, S. D. (2019). Cell therapy for cystic fibrosis lung disease: regenerative basal cell amplification. Stem cells translational medicine, 8(3), 225-235.
21. Chotirmall, S. H., Bogaert, D., Chalmers, J. D., Cox, M. J., Hansbro, P. M., Huang, Y. J., ... & Dickson, R. P. (2022). Therapeutic targeting of the respiratory microbiome. American journal of respiratory and critical care medicine, 206(5), 535-544.
22. Wang, Z., Lai, Z., Zhang, X., Huang, P., Xie, J., Jiang, Q., ... & Chung, K. F. (2021). Altered gut microbiome compositions are associated with the severity of asthma. Journal of Thoracic Disease, 13(7), 4322.
23. Tiew, P. Y., Jaggi, T. K., Chan, L. L., & Chotirmall, S. H. (2021). The airway microbiome in COPD, bronchiectasis and bronchiectasis‐COPD overlap. The Clinical Respiratory Journal, 15(2), 123-133.
24. Huang, Y. J., & LiPuma, J. J. (2015). The microbiome in cystic fibrosis. Clinics in chest medicine, 37(1), 59.
25. Woodall, C. A., McGeoch, L. J., Hay, A. D., & Hammond, A. (2022). Respiratory tract infections and gut microbiome modifications: A systematic review. PLoS One, 17(1), e0262057.
26. Hussain, M. S., Sharma, A., & Kumar, R. (2023). Prebiotics and probiotics: a focused review of applications in respiratory disorders.
27. Chan, B. K., Stanley, G., Modak, M., Koff, J. L., & Turner, P. E. (2021). Bacteriophage therapy for infections in CF. Pediatric pulmonology, 56, S4-S9.
28. Li, N., Dai, Z., Wang, Z., Deng, Z., Zhang, J., Pu, J., ... & Ran, P. (2021). Gut microbiota dysbiosis contributes to the development of chronic obstructive pulmonary disease. Respiratory Research, 22, 1-15.
29. Trivedi, R., & Barve, K. (2020). Gut microbiome a promising target for management of respiratory diseases. Biochemical Journal, 477(14), 2679-2696.
30. Mishra, B., & Singh, J. (2020). Novel drug delivery systems and significance in respiratory diseases. In Targeting chronic inflammatory lung diseases using advanced drug delivery systems (pp. 57-95). Academic Press.
31. Li, R., Li, J., & Zhou, X. (2024). Lung microbiome: new insights into the pathogenesis of respiratory diseases. Signal transduction and targeted therapy, 9(1), 19.
32. Wang, Z., Lai, Z., Zhang, X., Huang, P., Xie, J., Jiang, Q., ... & Chung, K. F. (2021). Altered gut microbiome compositions are associated with the severity of asthma. Journal of Thoracic Disease, 13(7), 4322.
33. Tiew, P. Y., Jaggi, T. K., Chan, L. L., & Chotirmall, S. H. (2021). The airway microbiome in COPD, bronchiectasis and bronchiectasis‐COPD overlap. The Clinical Respiratory Journal, 15(2), 123-133.
34. Yi, B., Dalpke, A. H., & Boutin, S. (2021). Changes in the cystic fibrosis airway microbiome in response to CFTR modulator therapy. Frontiers in cellular and infection microbiology, 11, 548613.
35. Zhou, Y., Wang, F., Tang, J., Nussinov, R., & Cheng, F. (2020). Artificial intelligence in COVID-19 drug repurposing. The Lancet Digital Health, 2(12), e667-e676.
36. Kaplan, A., Cao, H., FitzGerald, J. M., Iannotti, N., Yang, E., Kocks, J. W., ... & Mastoridis, P. (2021). Artificial intelligence/machine learning in respiratory medicine and potential role in asthma and COPD diagnosis. The Journal of Allergy and Clinical Immunology: In Practice, 9(6), 2255-2261.
37. Leung, E. L., Cao, Z. W., Jiang, Z. H., Zhou, H., & Liu, L. (2013). Network-based drug discovery by integrating systems biology and computational technologies. Briefings in bioinformatics, 14(4), 491-505.
38. Azeem, M., Mustafa, G., & Mahrosh, H. S. (2022). Virtual screening of phytochemicals by targeting multiple proteins of severe acute respiratory syndrome coronavirus 2: Molecular docking and molecular dynamics simulation studies. International Journal of Immunopathology and Pharmacology, 36, 03946320221142793.
39. Dreisbach, C., Koleck, T. A., Bourne, P. E., & Bakken, S. (2019). A systematic review of natural language processing and text mining of symptoms from electronic patient-authored text data. International journal of medical informatics, 125, 37-46.
40. Mahmud, S. (2025). AI And Data Analytics For Enhancing Home Healthcare: Optimizing Patient Outcomes And Resource Allocation. Frontiers in Applied Engineering and Technology, 2(01), 78-100.
41. Saber-Ayad, M., Hammoudeh, S., Abu-Gharbieh, E., Hamoudi, R., Tarazi, H., Al-Tel, T. H., & Hamid, Q. (2021). Current status of baricitinib as a repurposed therapy for COVID-19. Pharmaceuticals, 14(7), 680.
42. Santoro, M. G., & Carafoli, E. (2021). Remdesivir: from Ebola to COVID-19. Biochemical and biophysical research communications, 538, 145-150.
43. Ho, T. W., Huang, C. T., Tsai, Y. J., Lien, A. S. Y., Lai, F., & Yu, C. J. (2019). Metformin use mitigates the adverse prognostic effect of diabetes mellitus in chronic obstructive pulmonary disease. Respiratory research, 20, 1-10.
44. Wygrecka, M., Alexopoulos, I., Potaczek, D. P., & Schaefer, L. (2023). Diverse functions of apolipoprotein AI in lung fibrosis. American Journal of Physiology-Cell Physiology, 324(2), C438-C446.
45. Finnerty, J. P., Ponnuswamy, A., Dutta, P., Abdelaziz, A., & Kamil, H. (2021). Efficacy of antifibrotic drugs, nintedanib and pirfenidone, in treatment of progressive pulmonary fibrosis in both idiopathic pulmonary fibrosis (IPF) and non-IPF: a systematic review and meta-analysis. BMC Pulmonary Medicine, 21(1), 411.
46. Lee, J. J., Galatioto, J., Rao, S., Ramirez, F., & Costa, K. D. (2016). Losartan attenuates degradation of aorta and lung tissue micromechanics in a mouse model of severe Marfan syndrome. Annals of biomedical engineering, 44, 2994-3006.
47. Takemura, M., Niimi, A., Matsumoto, H., Ueda, T., Matsuoka, H., Yamaguchi, M., ... & Mishima, M. (2012). Clinical, physiological and anti-inflammatory effect of montelukast in patients with cough variant asthma. Respiration, 83(4), 308-315.
48. Cramer, C. L., Patterson, A., Alchakaki, A., & Soubani, A. O. (2017). Immunomodulatory indications of azithromycin in respiratory disease: a concise review for the clinician. Postgraduate medicine, 129(5), 493-499.
49. Cazzola, M., Calzetta, L., Rogliani, P., & Matera, M. G. (2017). The challenges of precision medicine in COPD. Molecular diagnosis & therapy, 21, 345-355.
50. Jungebluth, P., & Macchiarini, P. (2011). Stem cell-based therapy and regenerative approaches to diseases of the respiratory system. British medical bulletin, 99(1).
51. Gulliver, E. L., Young, R. B., Chonwerawong, M., D'Adamo, G. L., Thomason, T., Widdop, J. T., ... & Forster, S. C. (2022). the future of microbiome‐based therapeutics. Alimentary Pharmacology & Therapeutics, 56(2), 192-208.
52. Singh, A. (2024). Artificial intelligence for drug repurposing against infectious diseases. Artificial Intelligence Chemistry, 2(2), 100071.
Published
2024-11-10
How to Cite
Roshmi Ray, Nutan Sharma, Manish Kumar, Shikha Rathi, & Mukesh Sharma. (2024). Emerging Trends in Drug Discovery for Respiratory Disorders: Innovations and Future Prospects. Revista Electronica De Veterinaria, 25(2), 1280 -1288. https://doi.org/10.69980/redvet.v25i2.1759