Impact Of Indian Music On Animal Behavior And Physiology: An Integrative Review
Abstract
Indian music, with its intricate ragas and rhythmic talas, has long been recognized for its emotional and physiological effects in humans. However, its influence on animal behavior and physiology remains largely unexplored. While studies on Western classical music suggest stress reduction and enhanced well-being in animals, empirical data on the effects of Indian music are scarce. This review synthesizes existing literature to assess potential behavioral and physiological responses of animals to Indian music, particularly in domestic, captive, and agricultural contexts.
Preliminary findings suggest that specific ragas may induce relaxation, alleviate stress, and enhance cognitive functions in animals, yet most evidence remains anecdotal or limited to small-scale studies. Research gaps include the lack of controlled trials, long-term assessments, and species-specific responses. Advances in bioacoustics and artificial intelligence could refine methodologies to analyze music’s impact on animal cognition and stress modulation.
The findings have practical implications for veterinary care, animal therapy, conservation, and livestock management. By integrating interdisciplinary approaches—including ethology, neuroscience, and musicology—future research can establish a scientific framework for utilizing Indian music to enhance animal welfare. This review underscores the need for structured methodologies to explore its therapeutic potential in ethical and sustainable animal care practices.
References
[2] Bowman, A., Dowell, F. J., & Evans, N. P. (2017). Classical music reduces stress in kennelled dogs. Physiology & Behavior, 167, 290-297. https://doi.org/10.1016/j.physbeh.2017.01.024
[3] Chikahisa, S., Sei, H., Morishima, M., Sano, A., Kitaoka, K., Nakaya, Y., & Morita, Y. (2006). Exposure to music in the perinatal period enhances learning performance and alters BDNF/TrkB signaling in mice as adults. Behavioural Brain Research, 169(2), 312–319. https://doi.org/10.1016/j.bbr.2006.01.021
[4] Ciborowska, P., Michalczuk, M., & Bień, D. (2021). The effect of music on livestock: cattle, poultry and pigs. Animals, 11(12), 3572. https://doi.org/10.3390/ani11123572
[5] Clayton, M. (2000). Time in Indian music: Rhythm, metre, and form in North Indian rag performance. Oxford University Press.
[6] Fitch, W. T., & Reby, D. (2001). The descended larynx is not uniquely human. Proceedings of the Royal Society B: Biological Sciences, 268(1477), 1669-1675. https://doi.org/10.1098/rspb.2001.1704
[7] Hampton, A., Ford, A., Cox, R. E., Liu, C., & Koh, R. (2019). Effects of music on behavior and physiological stress response of domestic cats in a veterinary clinic. Journal of Feline Medicine and Surgery, 22(2), 122–128. https://doi.org/10.1177/1098612x19828131
[8] Ingendoh, R. M., Posny, E. S., & Heine, A. (2023). Binaural beats to entrain the brain? A systematic review of the effects of binaural beat stimulation on brain oscillatory activity, and the implications for psychological research and intervention. PLoS ONE, 18(5), e0286023. https://doi.org/10.1371/journal.pone.0286023
[9] Kamar, N. N. S., & Yusof, N. N. M. (2023). The impact of music on milk production and behaviour of dairy cattle. Pertanika Journal of Tropical Agricultural Science, 46(2), 385–400. https://doi.org/10.47836/pjtas.46.2.02
[10] Koelsch, S. (2010). Towards a neural basis of music-evoked emotions. Trends in Cognitive Sciences, 14(3), 131-137. https://doi.org/10.1016/j.tics.2010.01.002
[11] Koelsch, S., Fuermetz, J., Sack, U., Bauer, K., Hohenadel, M., Wiegel, M., Kaisers, U. X., & Heinke, W. (2011). Effects of Music Listening on Cortisol Levels and Propofol Consumption during Spinal Anesthesia. Frontiers in Psychology, 2. https://doi.org/10.3389/fpsyg.2011.00058
[12] Kogan, L. R., Schoenfeld-Tacher, R., & Simon, A. A. (2012). Behavioral effects of auditory stimulation on kenneled dogs. Journal of Veterinary Behavior, 7(5), 268-275. https://doi.org/10.1016/j.jveb.2011.11.002
[13] Kraus, N., Anderson, S., White-Schwoch, T., Fay, R. R., & Popper, A. N. (2017). The frequency-following response: A window into human communication. Springer Handbook of Auditory Research, 61, 23-41. https://doi.org/10.1007/978-3-319-47944-6_2
[14] Kühlmann, A. Y. R., De Rooij, A., Hunink, M. G. M., De Zeeuw, C. I., & Jeekel, J. (2018). Music Affects Rodents: A Systematic Review of Experimental research. Frontiers in Behavioral Neuroscience, 12. https://doi.org/10.3389/fnbeh.2018.00301
[15] Mathur, A., Vijayakumar, S. H., Chakrabarti, B., & Singh, N. C. (2015). Emotional responses to Hindustani raga music: the role of musical structure. Frontiers in Psychology, 6. https://doi.org/10.3389/fpsyg.2015.00513
[16] McDermott, J., & Hauser, M. D. (2007). Nonhuman primates prefer slow tempos but dislike music overall. Cognition, 104(3), 654-668. https://doi.org/10.1016/j.cognition.2006.07.011
[17] Neetu Singh, Dinesh C. Sharma, & Sumbul Zehra. (2023). Study Of The Behavioural Plasticity In Catla Catla: Response To Vedic Chant. Revista Electronica De Veterinaria, 24(3), 605 -608. https://doi.org/10.69980/redvet.v24i3.1016
[18] Pascoe, D. (2022). Exploring the effects of music complexity on the behaviours of a semi-captive population of African elephants (Loxodonta africana) (By Stellenbosch University). https://aeru.co.za/wp-content/uploads/2024/05/Exploring-the-effects-of-music-complexity-on-the-behaviours-of-African-elephants.pdf
[19] Patel, A. D. (2008). Music, language, and the brain. Oxford University Press.
[20] Patel, A. D., Iversen, J. R., Bregman, M. R., & Schulz, I. (2009). Experimental evidence for synchronization to a musical beat in a nonhuman animal. Current Biology, 19(10), 827–830. https://doi.org/10.1016/j.cub.2009.03.038
[21] Paz, J. E., Da Costa, F. V., Nunes, L. N., Monteiro, E. R., & Jung, J. (2021). Evaluation of music therapy to reduce stress in hospitalized cats. Journal of Feline Medicine and Surgery, 24(10), 1046–1052. https://doi.org/10.1177/1098612x211066484
[22] Roeske, T. C., Tchernichovski, O., Poeppel, D., & Jacoby, N. (2020). Categorical Rhythms Are Shared between Songbirds and Humans. Current Biology, 30(18), 3544-3555.e6. https://doi.org/10.1016/j.cub.2020.06.072
[23] Sarkamo, T., Tervaniemi, M., Laitinen, S., Numminen, A., Kurki, M., Johnson, J. K., & Rantanen, P. (2008). Music listening enhances cognitive recovery and mood after middle cerebral artery stroke. Brain, 131(3), 866-876. https://doi.org/10.1093/brain/awn013
[24] Schachner, A., Brady, T. F., Pepperberg, I. M., & Hauser, M. D. (2009). Spontaneous motor entrainment to music in multiple vocal mimicking species. Current Biology, 19(10), 831-836. https://doi.org/10.1016/j.cub.2009.03.061
[25] Seki, Y. (2023). Examining the capability for rhythmic synchronization and music production in vocal learning parrot species. Frontiers in Psychology, 14. https://doi.org/10.3389/fpsyg.2023.1271552
[26] Snowdon, C. T., Teie, D., & Savage, M. (2015). Cats prefer species-appropriate music. Applied Animal Behaviour Science, 166, 106-111. https://doi.org/10.1016/j.applanim.2015.02.012
[27] Soltis, J., Blowers, T. E., & Savage, A. (2011). Measuring positive and negative affect in the voiced sounds of African elephants (Loxodonta africana). The Journal of the Acoustical Society of America, 129(2), 1059–1066. https://doi.org/10.1121/1.3531798