Zinc Oxide Nanoparticles Bio-Synthesis: An Eco-Friendly Approach And Its Application

  • Sneha Dwivedi
  • Subash Chandra Sahu
  • Jyothi Ganti
  • P. Aruna
  • Alok Kumar Singh
Keywords: Zinc oxide nanoparticle, Biosynthesis, Plant, Microbes, Fungus

Abstract

Nanotechnology gives a clear-cut view of the production and utilization of materials with nanoscale dimensions. Due to the very high surface area to volume ratio that nanoscale dimension offers them an extremely particular feature. Recent research has focused on zinc oxide nanoparticles (ZnO NPs) because of their broad bandwidth and strong excitation binding energy. Antibacterial, antifungal, diabetic, wound-healing, anti-inflammatory, antioxidant, and optical materials could all be made from these particles. Due to the substantial amount of harmful chemicals and harsh environment used in the chemical and physical synthesis of these NPs, green manufacturing techniques utilizing plants, fungi, algae, and bacteria have been adopted. This study carefully examines synthesis and characterization methods applied for the green production of ZnO NPs from various bio physiological sources. It includes an introduction, an overview, a discussion of the nanoparticles' characterization, and a concluding section with an eye toward the future.

Author Biographies

Sneha Dwivedi

Research Scholar, Laboratory of Microbiology and Plant Pathology, Department of Botany, Chaudhary Mahadeo Prasad (C.M.P.) Degree College, University of Allahabad, Prayagraj, 211002

Subash Chandra Sahu

Assistant Professor Department of Chemistry, Govt. Women's College, Sambalpur, Odisha-768001

Jyothi Ganti

Assistant Professor Department of Chemistry, Pingle Government College for Women (A),Hanamkonda, Telangana.

P. Aruna

Assistant Professor, Department of Physics, Pingle Government College for Women (Autonomous) , Hanamkonda, Telangana, India -506002

Alok Kumar Singh

Assistant Professor, Laboratory of Microbiology and Plant Pathology, Department of Botany, Chaudhary Mahadeo Prasad (C.M.P.) Degree College, University of Allahabad, Prayagraj, 211002

References

1. Ambika, S., & Sundrarajan, M. (2015). Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. Journal of Photochemistry and photobiology B: Biology, 146, 52-57.
2. Azzazy, H. M., Mansour, M. M., Samir, T. M., & Franco, R. (2012). Gold nanoparticles in the clinical laboratory: principles of preparation and applications. Clinical chemistry and laboratory medicine, 50(2), 193-209.
3. Azam, M., Bhatti, H. N., Khan, A., Zafar, L., & Iqbal, M. (2022). Zinc oxide nano-fertilizer application (foliar and soil) effect on the growth, photosynthetic pigments and antioxidant system of maize cultivar. Biocatalysis and Agricultural Biotechnology, 42, 102343.
4. Bapat, M. S., Singh, H., Shukla, S. K., Singh, P. P., Vo, D. V. N., Yadav, A.,& Kumar, D. (2022). Evaluating green silver nanoparticles as prospective biopesticides: An environmental standpoint. Chemosphere, 286, 131761.
5. Balusamy, B., Kandhasamy, Y. G., Senthamizhan, A., Chandrasekaran, G., Subramanian, M. S., & Kumaravel, T. S. (2012). Characterization and bacterial toxicity of lanthanum oxide bulk and nanoparticles. Journal of Rare Earths, 30(12), 1298-1302.
6. Bayrami, A., Haghgooie, S., Pouran, S. R., Arvanag, F. M., & Habibi-Yangjeh, A. (2020). Synergistic antidiabetic activity of ZnO nanoparticles encompassed by Urtica dioica extract. Advanced Powder Technology, 31(5), 2110-2118.
7. Bhuyan, T., Mishra, K., Khanuja, M., Prasad, R., & Varma, A. (2015). Biosynthesis of zinc oxide nanoparticles from Azadirachta indica for antibacterial and photocatalytic applications. Materials Science in Semiconductor Processing, 32, 55-61.
8. Cao, G. (2004). Nanostructures & nanomaterials: synthesis, properties & applications. Imperial college press(distributed by world of Washington): London. Xiv, 434.
9. Chandra, H., Patel, D., Kumari, P., Jangwan, J. S., & Yadav, S. (2019). Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: Characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. Materials Science and Engineering: C, 102, 212-220.
10. Chen, X. J., Sanchez‐Gaytan, B. L., Qian, Z., & Park, S. J. (2012). Noble metal nanoparticles in DNA detection and delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 4(3), 273-290.
11. Chishti, S., Kaloo, Z.A., Sheikh, M.A., Wani, B.A. (2016). Antifungal activity and phytochemical screening of Origanum vulgare L. growing wild in Kashmir Himalaya. – Inter. J. of Innova. Sci., Engi. & Technol., (3):2, 108-115.
12. Cho, K. J., Moon, H. T., Park, G. E., Jeon, O. C., Byun, Y., & Lee, Y. K. (2008). Preparation of sodium deoxycholate (DOC) conjugated heparin derivatives for inhibition of angiogenesis and cancer cell growth. Bioconjugate chemistry, 19(7), 1346-1351.
13. Devi, R. S., & Gayathri, R. (2014). Green synthesis of zinc oxide nanoparticles by using Hibiscus rosa-sinensis. Int. J. Curr. Eng. Technol, 4(4), 2444-2446.
14. Dobrucka, R., & Długaszewska, J. (2016). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi journal of biological sciences, 23(4), 517-523.
15. Doria, G., Conde, J., Veigas, B., Giestas, L., Almeida, C., Assunção, M., ... & Baptista, P. V. (2012). Noble metal nanoparticles for biosensing applications. Sensors, 12(2), 1657-1687.
16. Elumalai, E. K., Prasad, T. N. V. K. V., Hemachandran, J., Therasa, S. V., Thirumalai, T., & David, E. (2010). Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J Pharm Sci Res, 2(9), 549-554.
17. Etemadzade, M., Ghamarypour, A., Zabihollahi, R., Shirazi, M., Sahebjamee, H., Vaziri, A. Z., ... & Aghasadeghi, M. R. (2016). Synthesis and evaluation of antiviral activities of novel sonochemical silver nanorods against HIV and HSV viruses. Asian Pacific Journal of Tropical Disease, 6(11), 854-858.
18. Fan, Z., & Lu, J. G. (2005). Zinc oxide nanostructures: synthesis and properties. Journal of nanoscience and nanotechnology, 5(10), 1561-1573.
19. Fernández, E. J., Garcia-Barrasa, J., Laguna, A., Lopez-de-Luzuriaga, J. M., Monge, M., & Torres, C. (2008). The preparation of highly active antimicrobial silver nanoparticles by an organometallic approach. Nanotechnology, 19(18), 185602.
20. Franklin, N.M., Rogers, N.J., Apte, S.C., Batley, G.E., Gadd, G.E., Casey, P.S., (2007). Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ. Sci. Technol. 41 (24), 8484–8490.
21. Frederickson, C. J., Koh, J. Y., & Bush, A. I. (2005). The neurobiology of zinc in health and disease. Nature Reviews Neuroscience, 6(6), 449-462.
22. Habeeb , M., Khan, M. S., Baker, A., Khan, I., Wahid, I., & Jaabir, M. M. (2019). Anticancer and antibacterial potential of MDR Staphylococcus aureus mediated synthesized silver nanoparticles. Biosci. Biotech. Res. Commun, 12, 26-35.
23. Hamedi, S., Ghaseminezhad, M., Shokrollahzadeh, S., & Shojaosadati, S. A. (2017). Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction of filamentous fungus and their antibacterial evaluation. Artificial Cells, Nanomedicine, and Biotechnology, 45(8), 1588-1596.
24. Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., ... & Chen, C. (2007). Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology, 18(10), 105104.
25. Jones, N., Ray, B., Ranjit, K. T., & Manna, A. C. (2008). Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS microbiology letters, 279(1), 71-76.
26. Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J., & Srinivasan, K. (2011). Biosynthesis of silver nanoparticles using Citrus sinensis peel extract and its antibacterial activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79(3), 594-598.
27. Kocbek, P., Obermajer, N., Cegnar, M., Kos, J., & Kristl, J. (2007). Targeting cancer cells using PLGA nanoparticles surface modified with monoclonal antibody. Journal of controlled release, 120(1-2), 18-26.
28. Klug, A., & Rhodes, D. (1987). Zinc fingers: a novel protein fold for nucleic acid recognition. In Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press. (Vol. 52, 473-482).
29. Kumar, S., Kumar, A., Kumar, A., & Krishnan, V. (2020). Nanoscale zinc oxide-based heterojunctions as visible light active photocatalysts for hydrogen energy and environmental remediation. Catalysis Reviews, 62(3), 346-405.
30. Kuriakose, S., Bhardwaj, N., Singh, J., Satpati, B., & Mohapatra, S. (2013). Structural, optical and photocatalytic properties of flower-like ZnO nanostructures prepared by a facile wet chemical method. Beilstein journal of nanotechnology, 4(1), 763-770.
31. Lakshmikandhan, T. (2020). Green synthesis of zinc oxide nanoparticles using Murraya koenigii (curry leaf) leaf extract. Malaya Journal of Matematik, Vol. S, No. 2, 4309-4317, https://doi.org/10.26637/MJM0S20/1113
32. Liu, Z., Stout, J. E., Tedesco, L., Boldin, M., Hwang, C., Diven, W. F., & Yu, V. L. (1994). Controlled evaluation of copper-silver ionization in eradicating Legionella pneumophila from a hospital water distribution system. Journal of Infectious Diseases, 169(4), 919-922.
33. Lu, L., Sun, R. W. Y., Chen, R., Hui, C. K., Ho, C. M., Luk, J. M., ... & Che, C. M. (2008). Silver nanoparticles inhibit hepatitis B virus replication. Antiviral therapy, 13(2), 253-262.
34. Maeda, H., Wu, J., Sawa, T., Matsumura, Y., & Hori, K. (2000). Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of controlled release, 65(1-2), 271-284.
35. Mehata, M. S., Majumder, M., Mallik, B., & Ohta, N. (2010). External electric field effects on optical property and excitation dynamics of capped CdS quantum dots embedded in a polymer film. The Journal of Physical Chemistry C, 114(37), 15594-15601.
36. Mehata, M. S. (2015). Enhancement of charge transfer and quenching of photoluminescence of capped CdS quantum dots. Scientific Reports, 5(1), 1-11.
37. Merkl, P., Long, S., McInerney, G. M., & Sotiriou, G. A. (2021). Antiviral activity of silver, copper oxide and zinc oxide nanoparticle coatings against SARS-CoV-2. Nanomaterials, 11(5), 1312.
38. Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., ... & Sastry, M. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano letters, 1(10), 515-519.
39. Mydeen, S. S., Kumar, R. R., Kottaisamy, M., & Vasantha, V. S. (2020). Biosynthesis of ZnO nanoparticles through extract from Prosopis juliflora plant leaf: Antibacterial activities and a new approach by rust-induced photocatalysis. Journal of Saudi Chemical Society, 24(5), 393-406.
40. Paul, B., Abdullah-Al Mamun, M., Haque, A., Paul, M., & Ghosh, K. (2019). Significant reduction of defect states and surface tailoring in ZnO nanoparticles via nano-bio interaction with glucose for bio-applications. IEEE Transactions on Nanobioscience, 18(3), 490-497.
41. Pomastowski, P., Krol, A., Rafińska, K., Railean-Plugaru, V., & Buszewski, B. (2017). Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Advances in colloid and interface science, 249, 37-52.
42. Qu, J., Yuan, X., Wang, X., & Shao, P. (2011). Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L. Environmental pollution, 159(7), 1783-1788.
43. Railean‐Plugaru, V., Pomastowski, P., Wypij, M., Szultka‐Mlynska, M., Rafinska, K., Golinska, P., ... & Buszewski, B. (2014). Study of silver nanoparticles synthesized by acidophilic strain of Actinobacteria isolated from the of Picea sitchensis forest soil. Journal of Applied Microbiology, 120(5), 1250-1263.
44. Raliya, R., Tarafdar, J.C. (2013). ZnO nanoparticle biosynthesis and its effect on phosphorous mobilizing enzyme secretion and gum contents in Clusterbean (Cyamopsis tetragonoloba L). Agric. Res. 2, 48–57.
45. Samy M. El-Megharbel, Mohammed A., Salmi F. A. and Hamza R. Z. (2021). Utilizing of (zinc oxide nano-spray) for disinfection against “SARS-CoV-2” and testing its biological effectiveness on some biochemical parameters during (COVID-19 pandemic)-ZnO Nanoparticles have antiviral activity against (SARS-CoV-2)”, Coating, vol. II,4,388.
46. S. M. El-Megharbel, M. Alsawat, F. A. Al-Salmi, and R. Z. Hamza, “Utilizing of (zinc oxide nano-spray) for disinfection against “SARS-CoV-2.” and testing its biological effectiveness on some biochemical parameters during (COVID-19 pandemic)-ZnO nanoparticles have antiviral activity against (SARS-CoV-2),” Coatings, vol. 11, no. 4
47. Santhoshkumar, T., Rahuman, A. A., Rajakumar, G., Marimuthu, S., Bagavan, A., Jayaseelan, C., & Kamaraj, C. (2011). Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitology research, 108(3), 693-702.
48. Sebesta, M., Urik, M., Bujdos, M., Kolencik, M., Vavra, I., Dobrocka, E., & Matus, P. (2020). Fungus Aspergillus niger processes exogenous zinc nanoparticles into a biogenic oxalate mineral. Journal of Fungi, 6(4), 210.
49. Sepeur, S. (2008). Nanotechnology: technical basics and applications. Vincentz Network GmbH & Co KG.168.
50. Shankar, S. S., Ahmad, A., & Sastry, M. (2003). Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnology progress, 19(6), 1627-1631.
51. Shrestha, R., Ban, S., Khatiwada, G., Kafle, S. R., Tiwari, S. K., & Joshi, R. (2023). Progress in Metal Nanoparticles-Based Elastic Materials. In Nanoparticles Reinforced Metal Nanocomposites: Mechanical Performance and Durability, Singapore: Springer Nature Singapore. 317-338.
52. Tarafdar, J. C., Raliya, R., Mahawar, H., & Rathore, I. (2014). Development of zinc nanofertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agricultural Research, 3, 257-262.
53. Vijayakumar, S., Nilavukkarasi, M., & Sakthivel, B. (2020). Bio-synthesized zinc oxide nanoparticles for anti-tuberculosis agent: Scientifically unexplored. Gene Reports, 20, 100764.
54. Yu, H., Ming, H., Gong, J., Li, H., Huang, H., Pan, K., & Wang, D. (2013). Facile synthesis of Au/ZnO nanoparticles and their enhanced photocatalytic activity for hydroxylation of benzene. Bulletin of Materials Science, 36(3), 367-372.
55. Yamamoto, O. (2001). Influence of particle size on the antibacterial activity of zinc oxide. International Journal of Inorganic Materials, 3(7), 643-646.
Published
2024-09-30
How to Cite
Sneha Dwivedi, Subash Chandra Sahu, Jyothi Ganti, P. Aruna, & Alok Kumar Singh. (2024). Zinc Oxide Nanoparticles Bio-Synthesis: An Eco-Friendly Approach And Its Application. Revista Electronica De Veterinaria, 25(2), 585- 591. https://doi.org/10.69980/redvet.v25i2.1443