An article of transdermic medication delivery contraptions for Diabetes management
Abstract
Diabetes mellitus is a chronic condition characterized by insufficient pancreatic insulin production or the body's ineffective utilization of insulin. Currently, over 415 million individuals are affected globally, with projections indicating that this number may rise to 642 million by 2040. The World Health Organization projects that diabetes will be the seventh leading cause of death by 2030. Current diabetes management strategies encompass oral hypoglycemic agents and insulin administration, both of which frequently necessitate substantial patient adherence. Transdermal systems for diabetes treatment have garnered attention in recent years as a viable alternative, offering advantages over oral medications and injections. This review presents recent advancements in transdermal research focused on enhancing diabetes management. Numerous technologies and techniques have been investigated and applied in transdermal systems for the treatment of diabetes. Research indicates that transdermal devices enhance bioavailability relative to oral delivery by circumventing first-pass hepatic metabolism and facilitating a continuous drug release pattern. Transdermal devices improve patient compliance by decreasing dose frequency and effectively regulating blood glucose levels over a prolonged duration. The transdermal system offers notable advantages compared to the oral route for the administration of antidiabetic medications and the biosensing of blood glucose levels, indicating potential improvements in clinical outcomes for diabetes management.
References
2. Bastaki, S. Diabetes mellitus and its treatment. Int. J. Diabetes. Metab., 2005, 13, 111-134.
3. Tripathi, K.D. Essentials of Medical Pharmacology, 6th ed.; Jaypee Brothers: New Delhi, 2008.
4. Kahn, S.E. The relative contributions of insulin resistance and betacell dysfunction in the pathophysiology of type 2 diabetes. Diabetologia., 2008, 46, 3–19.
5. Ahmad, L.A.; Crandall, J.P. Diabetes prevention: a review. Clin. Diabetes., 2010, 28, 53-59.
6. Kastorini, C.M.; Panagiotakos, D.B. Dietary patterns and prevention of type 2 diabetes: from research to clinical practice; a systematic review. Curr. Diabetes. Rev., 2009, 5, 221-227.
7. Patel, J.K.; Patel, R.P.; Amin, A.F.; Patel, M.M. Formulation and evaluation of mucoadhesive glipizide microspheres. AAPS. Pharm. SCI. tech., 2005, 6, E49-E55.
8. Rawat, M.K.; Jain, A.; Mishra, A.; Muthu, M.S.; Singh, S. Development of repaglinide loaded solid lipid nanocarrier: selection of fabrication method. Curr. Drug Del., 2010, 7, 44-50.
9. Kavitha, K.; Puneeth, K.P.; Tamizh, M. T. Development and evaluation of rosiglitazone maleate floating tablets. Int. J. App. Pharm., 2010, 2, 6-10.
10. Dhana Lekshmi, U.M.; Poovi, G.; Kishore, N.; Reddy, P.N. In vitro characterization and in vivo toxicity study of repaglinide loaded poly methyl methacrylate nanoparticles. Int. J. Pharm., 2010, 396, 194-203.
11. Gupta, V.N.; Shivakumar, H.G. Preperation and characterisation of super porous hydrogels as gastroretensive drug delivery system for rosiglitazone maleate. J. Pharm. Sci., 2010, 18, 200-209.
12. Vaghani, S.S.; Patel, M.M. Hydrogels based on interpenetrating network of chitosan and polyvinyl pyrrolidone for pH-sensitive delivery of repaglinide. Curr. Drug. Discov. Technol., 2011, 8, 126-35.
13. Mathew, S.T.; Devi, G.S.; Prasanth, V.V.; Vinod, B. NSAIDs as microspheres. Internet. J. Pharmacol., 2008, 6.
14. Rao, S.B.; Sharma, C.P. Use of chitosan as biomaterial: studies on its safety and haemostatic potential. J. Biomed. Mat. Res., 1997, 34, 21-28.
15. Lehr, C.M.; Bouwstra, J.A.; Schacht, E.H.; Junginger, H.E. In vitro evaluation of mucoadhesive properties of chitosan and some other natural polymers. Int. J. Pharm., 1992, 78, 43-48.
16. Henriksen, L.; Green, K.L.; Smart, J.D.; Smistad, G.; Karlsen, J. Bioadhesion of hydrated chitosans: an in vitro and in vivo study. Int. J. Pharm., 1996, 145, 231-240.
17. Chowdary, K.P.R.; Rao, Y.S. Design and in vitro and in vivo evaluation of mucoadhesive microcapsules of glipizide for oral controlled release: a technical note. AAS Pharm. Sci. Tech., 2003, 4, 87-92.
18. Chowdary, K.P.R.; Srinivas, L. Mucoadhesive drug delivery systems: a status of current review. Indian Drugs., 2000, 37, 400-406.
19. Jain, S.K.; Agrawal, G.P.; Jain, N.K. A novel calcium silicate based microspheres of repaglinide: in vivo investigations. J Control Release., 2006, 113(2), 111-116.
20. Attama, A.A.; Nwabunze, O.J. Mucuna gum microspheres for oral delivery of glibenclamide: In vitro evaluation. Acta. Pharma., 2007, 57, 161-171.
21. Balasubramaniam, J.; Rao, V.U.; Vasudha, M.; Babu, J.; Rajinikanth, P.S. Sodium alginate microspheres of metformin hydrochloride: formulation and in vitro evaluation. Curr. Drug. Deliv., 2007, 4, 249-56.
22. Raida, S.; Kassas, A.; Gohary, A.; Monirah, M.; Faadhel, A. Controlling of systemic absorption of gliclazide through incorporation into alginate beads. Int. J. Pharm., 2007, 341,230-237.
23. Phutane, P.; Shidhaye, S.; Lotlikar, V.; Ghule, A.; Sutar, S.; Kadam, V. In vitro evaluation of novel sustained release microspheres of glipizide prepared by the emulsion solvent diffusion evaporation method. J. Young. Pharm., 2010, 2, 35-41.
24. Reddy, K.K.; Narasimharao, R.; Jagadeeshbabu, V.; Reddy, C. Formulation and evaluation of metformin HCL microspheres. Int. J. Pharm. Tech., 2011, 3, 2228-2247.
25. Gangadharappa, H.V.; Srirupa, B.; Getyala, A.; Gupta, V.N.; Pramod, K.T.M. Development, in vitro and in vivo evaluation of novel floating hollow microspheres of rosiglitazone maleate. Der. Pharmacia. Lettre., 2011, 3, 299-316.
26. Mallick, J.; Sahoo, D.; Kar, D.M.; Reddy, S.K.; Sahoo, D. Formulation, evaluation and in vitro- in vivo correlation of sustained release glipizide microspheres. Pharm. Sci. Monitor., 2013, 4 (3), 90-99.
27. Sharma, H.K.; Lahkar, S.; Kantanath, L. Formulation and in vitro evaluation of metformin hydrochloride loaded microspheres prepared with polysaccharide extracted from natural sources. Acta. Pharm., 2013, 63 (2), 209-222.
28. Nayak, A.K.; Pal, D.K.; Santra, K. Plantago ovate F. mucilage alginate mucoadhesive beads for controlled release of glibenclamide: development, optimisation and in vitro in vivo evaluation. J Pharmaceutics. 2013.
29. Raval, V.; Sailor, G.; Seth, A.K.; Chauhan, S.K.P. Formulation and evaluation of gastroretentive drug delivery system of gliclazide. Pharm. Sci. Monitor., 2013, 4 (1), 214-230.
30. Bashir, S.; Nazir, I.; Khan, H.; Alamgeer; Asad, M.; Hassnain, F.; Qamar, S. Formulation and in vitro evaluation of nateglinide microsphere using HPMC and carbopol-940 polymers by ionic gelation method. Pak. J. Pharm. Sci., 2013, 26 (6), 1229-1235.
31. Mohanraj, V.J.; Chen, Y. Nanoparticles: A review. Trop. J. pharm. res., 2006, 5, 561-573.
32. Parashar, U.K.; Kesharwani, V.; Saxena, P.S.; Srivatava, A. Role of nanomaterials in biotechnology. Digest J. Nanomat. and Biostruct., 2008, 3, 81-87.
33. Cetin, M.; Atila, A.; Sahin, S.; Vural, L. Preparation and characterization of metformin hydrochloride loaded Eudragit® RSPO and Eudragit® RSPO/PLGA nanoparticles. Pharmaceut. Dev. Tech., 2011, 18, 570-576.
34. Sharma, N.; Bansal, M.; Visht, S.; Sharma, P.K.; Kulkarni, G.T. Nanoemulsions: a new concept of drug delivery system. Chron. Young. Sci. 2010, 2, 2-6.