Development Of Optimized Chalcone-Based Small Molecules As JAK Inhibitors For Rheumatoid Arthritis Treatment
Abstract
Rheumatoid arthritis (RA) is a persistent autoimmune disorder that affects around 0.5-1% of the global population. The design and optimization of small molecule chalcone derivatives as JAK inhibitors encompass a series of essential stages. The design of chalcone derivatives was facilitated using the Chemdraw and ADMET Lab 3.0 studies conducted by Swiss ADME. Molecular docking, acute prediction, and derivatives analysis were conducted on several compounds related to chalcone derivatives using the Schrodinger Glide 30.8 software with proteins ligands JAK 3 Kinase (PDB-6NY4).
Quantification of docking score, ADMET analysis, prediction of acute toxicity, and determination of structural position of ligands in the active JAKs site enzymes. The C compounds have a binding affinity (Docking score: -9.158), VAL901, LEU822, PHE817, ILE816, LEU822, VAL889, & TYR891 showed hydrophobic interaction with protein, charge (positive) ARG899, ARG820 & ARG887, charge (negative) GLU818, GLU819, polar nature is the HIS821, SER890 & THR815, and water GLY892, GLY888 bind to each other and show of protein affinity and the M compounds has a binding affinity (Docking score: -9.084), LEU875, ILE872, TYR886, VAL889, PHE817, MET902, VAL901, LEU900, and LEU898.
References
2. Isomäki, P., & Punnonen, J. (1997). Pro-and anti-inflammatory cytokines in rheumatoid arthritis. Annals of medicine, 29(6), 499-507.
3. Panayi, G., Lanchbury, J., & Kingsley, G. (1992). The importance of the T cell in initiating and maintaining the chronic synovitis of rheumatoid arthritis. Arthritis and rheumatism, 35(7), 729-735.
4. Lacraz, S., Isler, P., Vey, E., Welgus, H. G., & Dayer, J.-M. (1994). Direct contact between T lymphocytes and monocytes is a major pathway for induction of metalloproteinase expression. Journal of Biological Chemistry, 269(35), 22027-22033.
5. Simon, A. K., Seipelt, E., & Sieper, J. (1994). Divergent T-cell cytokine patterns in inflammatory arthritis. Proceedings of the National Academy of Sciences, 91(18), 8562-8566.
6. Firestein, G. S., & Zvaifler, N. J. (1990). How important are T cells in chronic rheumatoid synovitis? Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 33(6), 768-773.
7. Wernick, R. M., Lipsky, P. E., Marban‐Arcos, E., Maliakkal, J. J., Edelbaum, D., & Ziff, M. (1985). IgG and IgM rheumatoid factor synthesis in rheumatoid synovial membrane cell cultures. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology, 28(7), 742-752.
8. Lalitha, C., Gopinath, C., Kumar, K., Kumar, P., Kumar, P., & Kumar, E. (2012). Synthesis characterization and anti bacterial evaluation of some novel chalcones. IJAPR, 3(8), 1038-1044.
9. Aletaha, D., Neogi, T., & Silman, A. J. (2010). 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative (vol 69, pg 1580, 2010). Annals of the Rheumatic Diseases, 69(10), 1892-1892.
10. Plenge, R. M., & Criswell, L. A. (2008). Genetic variants that predict response to anti-tumor necrosis factor therapy in rheumatoid arthritis: current challenges and future directions. Current opinion in rheumatology, 20(2), 145-152.
11. Bandgar, B. P., Gawande, S. S., Bodade, R. G., Totre, J. V., & Khobragade, C. N. (2010). Synthesis and biological evaluation of simple methoxylated chalcones as anticancer, anti-inflammatory and antioxidant agents. Bioorganic & medicinal chemistry, 18(3), 1364-1370.
12. Wu, J., Li, J., Cai, Y., Pan, Y., Ye, F., Zhang, Y., Zhao, Y., Yang, S., Li, X., & Liang, G. (2011). Evaluation and discovery of novel synthetic chalcone derivatives as anti-inflammatory agents. Journal of medicinal chemistry, 54(23), 8110-8123.
13. Nowakowska, Z., Kędzia, B., & Schroeder, G. (2008). Synthesis, physicochemical properties and antimicrobial evaluation of new (E)-chalcones. European journal of medicinal chemistry, 43(4), 707-713.
14. Boeck, P., Falcão, C. A. B., Leal, P. C., Yunes, R. A., Cechinel Filho, V., Torres-Santos, E. C., & Rossi-Bergmann, B. (2006). Synthesis of chalcone analogues with increased antileishmanial activity. Bioorganic & medicinal chemistry, 14(5), 1538-1545.
15. Boggon, T. J., Li, Y., Manley, P. W., & Eck, M. J. (2005). Crystal structure of the Jak3 kinase domain in complex with a staurosporine analog. Blood, 106(3), 996-1002.
16. Hasan, S. A., Elias, A., Jwaied, A. H., Khuodaer, A. R., Hussain, S., & Abdulrahman, S. (2012). Synthesis of new fluorinated chalcone derivative with anti-inflammatory activity. Int. J. Pharm. Pharm. Sci, 4(5), 430-434.
17. Chavan, B., Gadekar, A., Mehta, P., Vawhal, P., Kolsure, A., & Chabukswar, A. (2016). Synthesis & Medicinal Significance of Chalcones-A Review. Asian Journal of Biomedical and Pharmaceutical Sciences, 6(56), 01.
18. Sun, Y.-F., & Cui, Y.-P. (2008). The synthesis, characterization and properties of coumarin-based chromophores containing a chalcone moiety. Dyes and Pigments, 78(1), 65-76.
19. Gomes, M. N., Muratov, E. N., Pereira, M., Peixoto, J. C., Rosseto, L. P., Cravo, P. V., Andrade, C. H., & Neves, B. J. (2017). Chalcone derivatives: promising starting points for drug design. Molecules, 22(8), 1210.
20. Cheng, H., Ross, J. A., Frost, J. A., & Kirken, R. A. (2008). Phosphorylation of human Jak3 at tyrosines 904 and 939 positively regulates its activity. Molecular and cellular biology, 28(7), 2271-2282.
21. Kurzer, J. H., Argetsinger, L. S., Zhou, Y.-J., Kouadio, J.-L. K., O'Shea, J. J., & Carter-Su, C. (2004). Tyrosine 813 is a site of JAK2 autophosphorylation critical for activation of JAK2 by SH2-Bβ. Molecular and cellular biology, 24(10), 4557-4570.
22. RCSB PDB - 6NY4: Crystal structure of JAK3 kinase domain in complex with a pyrrolopyridazine carboxamide inhibitor.