Exploring the Impact of Biochemical Factors on Fish and Their Cognitive Behavior: A Comprehensive Review

  • Bhupendra Kumar, K Suneetha, Trapty Agarwal
Keywords: Stressors, Toxicants, Behavior, Bioassay

Abstract

Numerous pollutants are being introduced into aquatic ecosystems both directly and indirectly as a result of industrialization and urbanization. The evaluation of toxicity has made extensive use of behavioral bioassay. Evaluating growth and reproduction requires a lengthier bioassay; behavior-based bioassay is quicker, more sensitive and more ecologically relevant. Behavioral bioassay presents a more promising option for risk evaluation of toxicants than lethality assessing bioassay. When it comes to the health of the exposed population, behavioral changes offer early warning signs that other routine testing overlooks. Behavior is an effect at the organism level and refers to the response, action, or operation of a system under specific conditions. We explain this by saying that our knowledge of how behavior reacts to chemical stress might grow. As a result, in the current environment, it is necessary to design fresher, more efficient techniques for researching behavioral responses. Fish behavior changes provide an effective way to gauge changes in the surrounding environment.

References

Dietz, R., Letcher, R. J., Desforges, J. P., Eulaers, I., Sonne, C., Wilson, S., ... & Vikingsson, G. (2019). The current state of knowledge on the biological effects of contaminants on arctic wildlife and fish. Science of the Total Environment, 696, 133792. Doi: https://doi.org/10.1016/j.scitotenv.2019.133792
Kwasek, K., Thorne-Lyman, A. L., & Phillips, M. (2020). Can human nutrition be improved through better fish-feeding practices? a review paper. Critical reviews in food science and nutrition, 60(22), 3822-3835. Doi: https://doi.org/10.1080/10408398.2019.1708698
Chau, K. Y., Moslehpour, M., Tu, Y. T., Tai, N. T., Tien, N. H., & Huy, P. Q. (2022). Exploring the impact of green energy and consumption on the sustainability of natural resources: Empirical evidence from G7 countries. Renewable energy, 196, 1241-1249. Doi: https://doi.org/10.1016/j.renene.2022.07.085
Pasparakis, C., Esbaugh, A. J., Burggren, W., & Grosell, M. (2019). Physiological impacts of Deepwater Horizon oil on fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 224, 108558. Doi: https://doi.org/10.1016/j.cbpc.2019.06.002
Selonen, S., Dolar, A., Kokalj, A. J., Skalar, T., Dolcet, L. P., Hurley, R., & van Gestel, C. A. (2020). Exploring the impacts of plastics in soil–The effects of polyester textile fibers on soil invertebrates. Science of the Total Environment, 700, 134451. Doi: https://doi.org/10.1016/j.scitotenv.2019.134451
Ding, M., Zhang, T., Zhang, H., Tao, N., Wang, X., & Zhong, J. (2019). Effect of preparation factors and storage temperature on fish oil-loaded crosslinked gelatin nanoparticle Pickering emulsions in liquid forms. Food Hydrocolloids, 95, 326-335. Doi: https://doi.org/10.1016/j.foodhyd.2019.04.052
Ashraf, S. A., Adnan, M., Patel, M., Siddiqui, A. J., Sachidanandan, M., Snoussi, M., & Hadi, S. (2020). Fish-based bioactives as potent nutraceuticals: Exploring the therapeutic perspective of sustainable food from the sea. Marine drugs, 18(5), 265. Doi: https://doi.org/10.3390/md18050265
Sánchez‐Hernández, J., Nunn, A. D., Adams, C. E., & Amundsen, P. A. (2019). Causes and consequences of ontogenetic dietary shifts: a global synthesis using fish models. Biological Reviews, 94(2), 539-554. Doi: https://doi.org/10.1111/brv.12468
Toni, M., Angiulli, E., Miccoli, G., Cioni, C., Alleva, E., Frabetti, F., ... & Maffioli, E. (2019). Environmental temperature variation affects brain protein expression and cognitive abilities in adult zebrafish (Danio rerio): A proteomic and behavioral study. Journal of proteomics, 204, 103396. Doi: https://doi.org/10.1016/j.jprot.2019.103396
Triki, Z., Wismer, S., Rey, O., Ann Binning, S., Levorato, E., & Bshary, R. (2019). Biological market effects predict cleaner fish strategic sophistication. Behavioral Ecology, 30(6), 1548-1557. Doi: https://doi.org/10.1093/beheco/arz111
Arechavala‐Lopez, P., Cabrera‐Álvarez, M. J., Maia, C. M., & Saraiva, J. L. (2022). Environmental enrichment in fish aquaculture: A review of fundamental and practical aspects. Reviews in Aquaculture, 14(2), 704-728. Doi: https://doi.org/10.1111/raq.12620

Pilecky, M., Závorka, L., Arts, M. T., & Kainz, M. J. (2021). Omega‐3 PUFA profoundly affects neural, physiological, and behavioral competencies–Implications for systemic changes in trophic interactions. Biological Reviews, 96(5), 2127-2145. Doi: https://doi.org/10.1111/brv.12747
Lucon-Xiccato, T., Savaşçı, B. B., Merola, C., Benedetti, E., Caioni, G., Aliko, V., ... & Perugini, M. (2023). Environmentally relevant concentrations of triclocarban affect behavior, learning, and brain gene expression in fish. Science of The Total Environment, 903, 166717. Doi: https://doi.org/10.1016/j.scitotenv.2023.166717
Upadhyay, R. K. (2020). Markers for global climate change and its impact on social, biological and ecological systems: A review. American Journal of Climate Change, 9(03), 159. Doi: http://www.scirp.org/journal/Paperabs.aspx?PaperID=102270
Naderi, M., Salahinejad, A., Attaran, A., Chivers, D. P., & Niyogi, S. (2020). Chronic exposure to environmentally relevant concentrations of bisphenol S differentially affects cognitive behaviors in adult female zebrafish. Environmental Pollution, 261, 114060. Doi: https://doi.org/10.1016/j.envpol.2020.114060
Hvas, M., Folkedal, O., & Oppedal, F. (2021). Fish welfare in offshore salmon aquaculture. Reviews in Aquaculture, 13(2), 836-852. Doi: https://doi.org/10.1111/raq.12501
Corriere, M., Soliño, L., & Costa, P. R. (2021). Effects of the marine biotoxins okadaic acid and dinophysistoxins on fish. Journal of Marine Science and Engineering, 9(3), 293.
Doi: https://doi.org/10.3390/jmse9030293
Lopes, A. R., Moraes, J. S., & Martins, C. D. M. G. (2022). Effects of the herbicide glyphosate on fish from embryos to adults: a review addressing behavior patterns and mechanisms behind them. Aquatic Toxicology, 106281. Doi: https://doi.org/10.1016/j.aquatox.2022.106281
Ortega, M. A., Fraile-Martínez, Ó., García-Montero, C., Alvarez-Mon, M. A., Lahera, G., Monserrat, J., ... & De Mon, M. A. (2022). The biological role of nutrients, food, and dietary patterns in the prevention and clinical management of major depressive disorder. Nutrients, 14(15), 3099. Doi: https://doi.org/10.3390/nu14153099
Michaiel, A. M., & Bernard, A. (2022). Neurobiology and changing ecosystems: Toward understanding the impact of anthropogenic influences on neurons and circuits. Frontiers in Neural Circuits, 16, 995354. Doi: https://doi.org/10.3389/fncir.2022.995354
Beitinger, T. L. (1990). Behavioral reactions for the assessment of stress in fishes. Journal of Great Lakes Research, 16(4), 495-528. Doi: https://doi.org/10.1016/S0380-1330(90)71443-8
Chandan, S., & Chandra, S. N. (2018). Acute toxicity of a Biopesticide Spinosad to benthic Oligochaete worm, Branchiura sowerbyi, and the fry of Common Carp, Cyprinus carpio. Interntional Journal of Life Sciences, 6(1), 187-193.
Grobler, J. M., & Wood, C. M. (2018). The effects of high environmental ammonia on the structure of rainbow trout hierarchies and the physiology of the individuals therein. Aquatic Toxicology, 195, 77-87. Doi: https://doi.org/10.1016/j.aquatox.2017.12.006
Alonso, Á., & Valle-Torres, G. (2018). Feeding behavior of an aquatic snail as a simple endpoint to assess the exposure to cadmium. Bulletin of environmental contamination and toxicology, 100, 82-88. Doi: https://doi.org/10.1007/s00128-017-2230-3
Srivastava, G. H. D. N. (2018). Behavioral alterations in Channa punctatus after exposure to endosulfan followed by subsequent recovery.
Priyatha, C. V., & Chitra, K. C. (2018). Acute toxicity of triclosan on the native freshwater fish, Anabas testudineus (Bloch, 1792): behavioral alterations and histopathological lesions. Int J Life Sci, 6(1), 166-172.
Barboza, L. G. A., Vieira, L. R., & Guilhermino, L. (2018). Single and combined effects of microplastics and mercury on juveniles of the European seabass (Dicentrarchus labrax): changes in behavioral responses and reduction of swimming velocity and resistance time. Environmental Pollution, 236, 1014-1019. Doi: https://doi.org/10.1016/j.envpol.2017.12.082
Olowolafe, T., & Olufayo, M. O. (2018). Toxicity of aqueous extracts of bitter leaf (Vernonia amygdalina) on haematological profile of African catfish (Clarias gariepinus) juveniles. International Journal of Fisheries and Aquatic Studies, 6(2), 596-600.
Dutra Costa, B. P., Aquino Moura, L., Gomes Pinto, S. A., Lima-Maximino, M., & Maximino, C. (2020). Zebrafish models in neural and behavioral toxicology across the life stages. Fishes, 5(3), 23. Doi: https://doi.org/10.3390/fishes5030023
Makaras, T., & Stankevičiūtė, M. (2022). Swimming behavior in two ecologically similar three-spined (Gasterosteus aculeatus L.) and nine-spined sticklebacks (Pungitius pungitius L.): a comparative approach for modeling the toxicity of metal mixtures. Environmental Science and Pollution Research, 1-18.
Fernandes, M. N., & Moron, S. E. (2020). Breathing and respiratory adaptations. In Biology and physiology of freshwater Neotropical fish (pp. 217-250). Academic Press.
Doi: https://doi.org/10.1016/0034-5687(67)90030-8
Published
2024-01-01
How to Cite
Bhupendra Kumar, K Suneetha, Trapty Agarwal. (2024). Exploring the Impact of Biochemical Factors on Fish and Their Cognitive Behavior: A Comprehensive Review. Revista Electronica De Veterinaria, 24(3), 464-471. Retrieved from https://www.veterinaria.org/index.php/REDVET/article/view/473
Section
Articles