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Abstract –The proposed work intends to automate the detection and classification of diabetic retinopathy from retinal 

fundus image which is very important in ophthalmology. Most of the existing methods use handcrafted features and those 

are fed to the classifier for detection and classification purpose. Recently convolutional neural network (CNN) is used for 

this classification problem but the architecture of CNN is manually designed. This paper proposes a novel methodology 

that combines deep learning techniques with texture analysis to enhance the accuracy of retinal lesion detection. The 

proposed methodology integrates Convolutional Neural Network (CNN)-based deep features extraction with Gray-Level 

Co-occurrence Matrix (GLCM) texture features extraction. Additionally, a feature fusion process and Neighborhood 

Component Analysis (NCA)-based feature selection are employed to optimize the feature representation. The 

classification stage utilizes Support Vector Machine (SVM) to classify retinal images based on the extracted features. 

Simulation results and discussions on the DRIVE dataset demonstrate the effectiveness of the proposed methodology, 

achieving an accuracy of 99.07% and demonstrating superior performance compared to previous research works.  
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I. INTRODUCTION  

Diabetes mellitus (DM) is a prevalent chronic condition, ranking as the fourth leading cause of death globally. According 

to recent estimates by the International Diabetes Federation (IDF), approximately 336 million people worldwide have 

DM, with projections indicating a potential increase of up to 7.7% by 2030 [1]. Diabetic retinopathy (DR) is a serious 

complication of DM, leading to irreversible blindness in adults worldwide. This condition is associated with both type 1 

and type 2 diabetes, with a high prevalence among patients who have had diabetes for extended periods. For instance, 75-

95% of type 1 diabetes patients with a 15-year history exhibit signs of DR, while 60% of type 2 diabetes patients with 

over 16 years of illness are affected [2]. Globally, DR affects approximately 80% of patients diagnosed with diabetes for 

more than ten years [3]. Its rapid progression, often without early symptoms, underscores the importance of early 

screening, proper medication, and consistent treatment to mitigate its prevalence. Various societies recognize the value of 

initial treatment procedures for DR diagnosis, including point-of-care ophthalmoscopy through fundus photography and 

centralized grading in screening applications. Despite growing evidence supporting routine assessment and early 

intervention, real-time DR screening remains limited, particularly in developing countries. This limitation is primarily 

due to a shortage of trained retinal experts and inadequate financial resources to address the increasing prevalence of 

diabetes [4]. Digital fundus imaging serves as a standard diagnostic tool for DR, with recent clinical studies 

recommending periodic examinations throughout a diabetic patient's lifetime. These examinations vary in frequency based 

on the severity of DR, with annual screenings suggested for patients with no or mild DR and more frequent assessments 

for those with moderate retinopathy. Between 2000 and 2010, there was a notable shift in the incidence of blindness due 

to diabetes in England and Wales [5]. This increase in demand for care has prompted a transition from traditional 

physician-led treatment approaches to computer-aided diagnosis (CAD) systems. These CAD programs are expected to 

achieve competitive sensitivity (SE) and specificity (SP) rates compared to expert evaluations. In the UK, diabetes 

recommendations stipulate that CAD systems should have a minimum SE of 80%. The adoption of automated analysis 

systems has significantly reduced workload, with a 61.2% decrease in distinguishing healthy samples from those with 

diabetic retinopathy [5]. These computerized systems demonstrate diagnostic capabilities comparable to expert evaluators, 

while potentially offering superior abilities in detecting disease progression and classifying stages. Furthermore, their 

robust image analysis output remains consistent over time, even in the presence of transient criterion changes and low-

quality images.  
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Deep learning models (DLMs), a subset of machine learning, have emerged as powerful tools in various domains, 

including computer vision and biomedical imaging analysis. Deep convolutional neural networks (CNNs), a popular type 

of DLM, have been particularly successful in classifying natural images and have demonstrated effectiveness in medical 

image classification tasks [6]. For example, CNN models have played a significant role in classifying nonproliferative 

diabetic retinopathy (NPDR) with high sensitivity and specificity using fundus images. Additionally, they have improved 

the efficiency, accessibility, and affordability of diabetic retinopathy grading systems by outperforming conventional 

hand-designed feature-based methods when validated on large datasets in various settings. The paper starts by reviewing 

a wide range of literature in Section II, focusing on relevant research in the field. In Section III, the materials and methods 

used are outlined. Then, Section IV offers the proposed methodology used in the paper. Section V presents the results 

obtained from simulations conducted using MATLAB, along with a detailed analysis. Finally, Section V wraps up the 

paper by summarizing the findings and providing concluding remarks.  

  

II. LITERATURE REVIEW  

State-of-the-art automatic diabetic retinopathy (DR) detection techniques can be broadly classified into two categories. 

The older studies primarily utilize classical image processing techniques to detect, segment, and analyze lesions in images 

based on their precise characteristics. These techniques employ a series of predefined algorithms to identify specific 

features such as microaneurysms, hemorrhages, exudates, and blood vessels. Methods such as morphological operations, 

thresholding, and edge detection are commonly used for lesion detection and segmentation. In contrast, more recent 

studies rely on Convolutional Neural Networks (CNNs) to perform both feature extraction and classification [7]. CNNs 

have shown remarkable effectiveness in learning discriminative features directly from the images, thereby eliminating the 

need for handcrafted feature extraction. This approach offers a more holistic and datadriven solution to DR detection, 

potentially improving accuracy and efficiency compared to traditional image processing methods. The authors of [8] 

categorized diabetic retinopathy features, such as microaneurysms, hemorrhages, exudates, and blood vessels, into four 

groups for computer-aided diagnosis systems: optic disc localization and segmentation, exudate segmentation, blood 

vessel segmentation, and geometric and hemodynamic features, as well as diabetic retinopathy detection and 

classification. Exudates, a common feature of diabetic retinopathy, can be detected using morphological operations and 

Renyi entropy thresholding as proposed by the authors of [9]. This method involves three main stages: image enhancement 

through morphological operations, optic disc detection and removal, and exudate segmentation using Renyi entropy 

thresholding. Additionally, exudate segmentation has been proposed using a saliency method based on regions, which 

involves detecting exudates on exudate patches after optic disc removal and recombining them into a complete image. 

Another feature, red small dots, comprising microaneurysms and tiny hemorrhages, can be detected using the Tyler Coye 

algorithm and morphological operations as proposed in [10]. This process involves detecting and removing bright areas 

like optic discs and exudates, segmenting dark areas, performing blood vessel segmentation, and then identifying red 

small dots. The authors of [11] utilized objects from exudates to determine moderate and severe non-proliferative diabetic 

retinopathy (NPDR). Their system involves pre-processing and segmentation using morphological operations, feature 

extraction including area, perimeter, number of centroids, and standard deviation, and classification using soft margin 

Support Vector Machine (SVM). In [12], the author proposed a technique aimed at enhancing the quality of fundus images. 

This method involved applying morphological operations along with Contrast Limited Adaptive Histogram Equalization 

(CLAHE) to improve the visibility of vessels in the images. In [13], new methods of image transformations were 

illustrated to enhance retinal images, including wavelet transform, curvelet transform, and contourlet transform. The paper 

extracted various features and conducted comparisons among these three transformations.  

The authors of [14] utilized Support Vector Machines (SVM) and k-Nearest Neighbors (KNN) for the classification of 

Diabetic Retinopathy, which yielded promising comparative results. The detection of exudates (EXs) from fundus images 

was achieved by leveraging core signs of DR. Specifically, Fuzzy C-Means (FCM) was employed for EX detection in 

[15]. Gray Level Co-occurrence Matrix (GLCM) was utilized to examine the relationship between pixel intensities in 

retinal images, offering insights into texture features. Histogram calculation provided information about the intensity 

distribution, facilitating the prediction of pixel relationships. Morphological techniques were applied for EX detection in 

retinal images, followed by the use of Probabilistic Neural Network (PNN) to distinguish between normal and abnormal 

images [16]. To identify EXs, a two-step process involving rough segmentation and fine segmentation was employed. 

Rough segmentation utilized morphological and column-wise operations, while fine segmentation involved 

morphological reconstruction [17]. Machine learning methods were proposed by many researchers to determine the 

presence or absence of EXs, extracting features such as centroids, means, and standard deviations [18].  

Dynamic thresholding and median filtering techniques were proposed for the detection of hard EXs [19]. Both texture 

and wavelet features were used for classifying lesion and non-lesion regions. Bright lesions were detected using Otsu's 

thresholding and Sobel edge detector methods [20]. In recent years, Convolutional Neural Networks (CNNs) have made 

significant advancements in computer vision and image classification. Several studies have utilized CNNs to classify 

diabetic retinopathy. For example, the authors of [21] enhanced input images and employed CNN architectures such as 



REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504   

Vol 24, No.4 (2023) http://www.veterinaria.org   

Article Received: September 2023; Revised: October 2023; Published: November 2023 

  

368  

AlexNet, VGGNet, GoogLeNet, and ResNet through transfer learning. While CNNs can perform feature extraction and 

classification simultaneously, fine-tuning CNNs for classification may require longer computation times.  

  

III.MATERIALS AND METHODS  

3.1 CNN-based Deep Features  

The advent of deep learning has revolutionized computer vision, facilitating the automatic extraction of complex and 

abstract image representations. Among the myriad deep learning architectures, Convolutional Neural Networks (CNNs) 

have emerged as a cornerstone, particularly renowned for their prowess in feature extraction and representation learning. 

In the approach delineated in this dissertation, a pre-trained CNN architecture is leveraged to extract deep features from 

input images. These deep features are meticulously engineered to encapsulate both low-level and highlevel image 

attributes, endowing the methodology with the capability to discern between authentic and manipulated regions 

effectively.  

  

  
Figure 1: Schematic Depiction of a Deep Convolutional Neural Network [21]  

  

The Convolution Operation: At its essence, convolution entails the integration of two functions, typically involving real 

numbers as variables. Mathematically, the convolution operation is formally defined as:  

  

 𝑠(𝑡) = ∫ 𝑥(𝑎)𝑤(𝑡 − 𝑎)𝑑𝑎               (1)  

  

In CNN, this operation is often succinctly expressed as:  

𝑠(𝑡) = (𝑥 ∗ 𝑤)(𝑡)                                                       (2)  

  

Here, the first function (𝑥) denotes the input, while the second function (𝑤) represents the kernel. The result of this 

convolution operation is termed a feature map. When working with discrete data in computational contexts, continuous 

functions are approximated as a sum of "discrete" functions, taking the form:  

  

𝑆(𝑡) = (𝑥 ∗ 𝑤)(𝑡) = ∑∞𝑎=−∞ 𝑥(𝑎)𝑤(𝑡 − 𝑎)                  (3)  

In the domain of deep learning, the input typically comprises a multi-dimensional vector (tensor), whereas the kernel is 

often a multi-dimensional parameter vector adjusted during the learning process. For instance, when utilizing an image 

(𝐼) as input data, a two-dimensional kernel (𝐾) is commonly employed, denoted as:  

  

𝑆(𝑖, 𝑗) = (𝐼 ∗ 𝐾)(𝑖, 𝑗) = ∑𝑚 ∑𝑛 𝐼(𝑖 − 𝑚, 𝑗 − 𝑛)𝐾(𝑚, 𝑛) (4)  

  

3.2 Gray-Level Co-occurrence Matrix (GLCM)  

The GLCM, symbolized as 𝑃(𝑖, 𝑗|𝑑, 𝜃), signifies the joint probability of encountering two pixels with intensity values 𝑖 
and 𝑗 at a given relative displacement 𝑑 and angle 𝜃 within the image. Computation of GLCM involves traversing a 

window of predetermined size across the image and tallying the occurrences of pixel pairs adhering to the displacement 

and angle criteria. Mathematically, it is represented as:  

 𝑃(𝑖, 𝑗|𝑑, 𝜃) = ∑𝑥 ∑𝑦 𝛿(𝐼(𝑥, 𝑦) − 𝑖)𝛿(𝐼(𝑥 + 𝑑 cos(𝜃) , 𝑦 + 𝑑 sin(𝜃) − 𝑗)(5) Here:  

• 𝑃(𝑖, 𝑗|𝑑, 𝜃) denotes the GLCM at displacement 𝑑 and angle 𝜃 for pixel values 𝑖 and 𝑗.  
• 𝛿 stands for the Kronecker delta function, yielding 1 if the condition inside holds true and 0 otherwise.  

• 𝐼(𝑥, 𝑦) represents the pixel value at position (𝑥, 𝑦) in the image.  

• 𝑑 corresponds to the displacement (i.e., the spatial gap between two pixels).  

• 𝜃 denotes the angle under consideration for co-occurrence analysis, conventionally set at 0°, 45°, 90°, and 135°.  
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3.2.1 Normalization of GLCM  

Normalization of GLCM is imperative to confine its values within the range of [0, 1], thereby rendering the features 

insensitive to alterations in image contrast and brightness. Typically, normalization entails dividing the GLCM by the 

summation of all its elements, as depicted by the equation:  

 𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑖, 𝑗|𝑑, 𝜃) = ∑ 𝑖∑𝑃(𝑗𝑖𝑃,(𝑗𝑖|,𝑑𝑗,|𝑑𝜃,)𝜃)     (6)  

3.2.2 Computation of GLCM Features  

Post normalization, diverse texture features can be derived from the GLCM. These features serve as descriptors of textural 

properties within the image. Prominent GLCM features include:  

  

Contrast: Signifying the local fluctuations in pixel intensity values, it is calculated as:  

  

𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = ∑𝑖 ∑𝑗(𝑖 − 𝑗)2𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑖, 𝑗|𝑑, 𝜃)                          (7)  

  

Energy (Angular Second Moment): Reflecting the uniformity or homogeneity of texture, it is computed as:  

  

𝐸𝑛𝑒𝑟𝑔𝑦 = ∑𝑖 ∑𝑗[𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑖, 𝑗|𝑑, 𝜃)]2                                      (8)  

  

Entropy: Capturing the randomness or complexity inherent in the texture, it is expressed as:  

  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = − ∑𝑖 ∑𝑗 𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑖, 𝑗|𝑑, 𝜃) log[𝑃𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑(𝑖, 𝑗|𝑑, 𝜃)](9)  

  

Correlation: Describing the linear interdependence between pixel pairs, it is given by:  

  

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =                           (10)  
𝜎𝑖𝜎𝑗 

Here:  

• 𝜇 and 𝜈 represent the means of the marginal distributions of 𝑖 and 𝑗, respectively.  

• 𝜎𝑖 and 𝜎𝑗 denote the standard deviations of the marginal distributions of 𝑖 and 𝑗, respectively.  

GLCM-based texture feature extraction serves as a pivotal tool in characterizing the underlying textural intricacies within 

images, facilitating diverse applications across domains ranging from medical imaging to remote sensing.  

  

  
Figure 2: Schematic Representation of the Proposed Methodology for DR Detection  

  

4.1 Image Pre-Processing  

Pre-Processing: In order to improve the image quality, we work on the green channel of the RGB color space, then we 

apply an adaptive histogram equalization on this channel. Additionally, to remove clear lesions if they are close to 

hemorrhages, we apply a morphological aperture on the enhanced image. The size of the structuring element must not be 
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higher, otherwise the hemorrhages will present discontinuities (Figure 3(b)). Finally, the noises are minimized by the 

application of a small size Gaussian filter.  

  

  
(a) (b)  

Figure 3: Preprocessing of the original image; (a): original image; (b): enhanced image 

  

Detection of Dark (Red) Regions: Knowing that the pixel values of hemorrhages are lower than those of other regions 

such as the vascular network, the macula, the micro-aneurysms, we perform the following steps to detect these regions:  

• The first step was to apply a median filter of masks of 6×6 pixels and 130×130 pixels Then, a subtraction operation 

between these two images.  

• The second step is to apply a thresholding operation (Figure 4).  

  

𝐼𝑀𝐹1 = 𝑇𝑆[𝐼𝑀𝐹𝑑(6×6) − 𝐼𝑀𝐹𝑑(130×130)]           (11)  

 Where, 𝐼𝑀𝐹1:dark regions in the image; 𝑇𝑆: image thresholding; 𝐼𝑀𝐹𝑑(6×6): the median filter of size 6 × 6;  

𝐼𝑀𝐹𝑑(130×130): median filter of size 130 × 130.  

  

  
(a) (b)  

Figure 4: Detection of red candidate regions; (a): Results of extraction of red regions; (b): result of 

thresholding on the smoothed image 

  

Extraction of Red Regions: The extraction of the red structures is accomplished by the use of the black top hat 

transformation. This transformation makes it possible to bring out all the objects which cannot contain a structuring 

element of size ′𝑏′, as is the case for small objects (micro-aneurysms), but also for objects of elongated shape (vascular 

network).  

𝑐ℎ(𝑓)∅ = ∅(𝑓) − 𝑓                  (12)  

Where, 𝑐ℎ(𝑓)∅ is the image of the black top hat; ∅(𝑓) is the morphological closure of the improved image; 𝑓 is the 

improved image.  
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4.2 CNN-based Deep Features Extraction  

The process of extracting CNN-based deep features involves configuring a CNN architecture to capture pertinent patterns 

and information specific to the task at hand.The Common options include VGG, ResNet, Inception, or even custom-

designed architectures. Factors influencing the choice include the complexity of lesion patterns, the availability of pre-

trained models, and computational resources.Input preprocessing plays a crucial role in preparing images for the CNN 

model. This typically involves resizing images to a standardized resolution, normalizing pixel values, and applying 

augmentation techniques such as rotations and flips to enhance the model's robustness.Leveraging pre-trained CNN 

models trained on large-scale image datasets like ImageNet can expedite the training process and potentially improve 

overall performance. Fine-tuning these pre-trained models involves adjusting the top layers to align with the specific 

output requirements of the problem at hand.In CNN-based feature extraction, the process entails passing input images 

through the network and extracting features from one or more intermediate layers. These extracted features encapsulate 

hierarchical information, ranging from low-level textures to high-level semantic content.  

  

4.2.1 Mathematical Formulation  

The essential components can be defined mathematically as follows:  

  

CNN Model: Represented as a function 𝑓𝐶𝑁𝑁, the CNN model takes an input image 𝐼 and generates feature maps at a 

specific layer 𝐿:  

  

𝐹𝐿 = 𝑓𝐶𝑁𝑁(𝐼)                                                                  (13)  

  

Here, 𝐹𝐿 denotes the set of feature maps at layer 𝐿, and 𝐼 represents the input image.  

  

Feature Extraction: The extraction process involves selecting one or more feature maps from layer 𝐿 to represent the 

input image. These feature maps are then flattened into a vector, resulting in the extracted deep features:  

  

 𝐹𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝐹𝐿)           (14)  

  

Here, 𝐹𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 represents the vector of extracted deep features.  

  

4.3 Texture Features Extraction using GLCM  

Texture features extraction using GLCM involves analyzing the frequency of occurrence of pairs of pixel intensities within 

a defined neighborhood in an image. This method aims to quantify the frequency of different pairs of gray levels appearing 

together at a specific distance and orientation within the image, thereby capturing textural information encompassing 

patterns, structures, and variations. The mathematical foundation of GLCM features extraction is previously explained in 

section 3.2.  

  

4.4 Combining Deep Features and GLCM Features  

Combining deep features from CNN with GLCM features presents a robust strategy for enhancing image analysis tasks, 

such as diabetic retinopathy detection. This approach aims to harness both the textural insights provided by GLCM and 

the semantic knowledge embedded in deep features to bolster the efficacy of the detection system.  

  

4.4.1 Feature Fusion Process  

The amalgamation of deep features and GLCM features entails consolidating these distinct sets of descriptors into a 

unified feature vector. The sequential steps involved in this process are delineated as follows:  

  

Deep Feature Extraction:Deep features are extracted from input images using either a pretrained CNN model or a 

bespoke architecture tailored to the specific task at hand.  

These deep features encapsulate high-level semantic representations discerned from the images by the CNN.  

  

GLCM Feature Extraction:GLCM features are computed by scrutinizing the spatial relationships among pixel values, 

thereby encapsulating textural nuances within the images.  

It's common practice to compute multiple GLCMs corresponding to diverse orientations and displacements.  

  

Feature Fusion:Extracted deep features and GLCM features are melded together through concatenation or another fusion 

mechanism to construct a hybrid feature vector.  
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Concatenation emerges as a prevalent approach, yielding a feature vector comprising deep features followed by GLCM 

features.  

  

4.4.2  Mathematical Formulation of Feature Fusion  

Let 𝐷 signify the deep features procured from the CNN, and 𝐺 denote the GLCM features. The resultant combined feature 

vector 𝐹 can be mathematically expressed as:  

  

 𝐹 = [𝐷, 𝐺]            (15)  

  

Here, [𝐷, 𝐺] signifies the concatenation of deep features 𝐷 and GLCM features 𝐺 into a cohesive vector. This integrated 

feature representation amalgamates the complementary insights furnished by both deep learning-based semantic analysis 

and texture-based GLCM analysis, thereby furnishing a comprehensive characterization of image content suitable for a 

diverse array of applications.  

  

4.5 NCA-Based Feature Selection  

Neighborhood Component Analysis (NCA) offers a dimensionality reduction avenue, strategically curating a subset of 

features to heighten the efficacy of classification or clustering tasks. Within the realm of amalgamated deep and GLCM 

features, NCA emerges as a potent tool for discerning the most salient features from the hybrid feature vector.  

  

4.5.1 Objective Function Formulation  

The core of NCA lies in maximizing a stochastic objective function, gauging the efficacy of feature selection regarding 

the task's objectives. This objective function is mathematically articulated as:  

  

𝐽(𝑓) = ∑𝑁𝑖=1 𝑝𝑖 ∑𝑗≠𝑖 𝑝𝑗1(𝑦𝑖 = 𝑦𝑗) 𝑒𝑥𝑝 (−‖𝑓(𝑥𝑖) − 𝑓(𝑥𝑗)‖2)(16)  

  

Here's a breakdown:  

• 𝑓 symbolizes the feature selection function.  

• 𝑥𝑖 and 𝑥𝑗 denote data samples, while 𝑦𝑖 and 𝑦𝑗 represent their corresponding labels.  

• 1(𝑦𝑖 = 𝑦𝑖) acts as an indicator function, assuming a value of 1 if 𝑦𝑖 = 𝑦𝑗 (indicating samples from the same class) and 0 

otherwise.  

• 𝑝𝑖 signifies the probability of selecting sample 𝑥𝑖 for optimization.  

  

4.5.2 Optimization Strategies  

NCA harnesses optimization methodologies like stochastic gradient descent (SGD) to ascertain the optimal feature 

selection function 𝑓 that maximizes the objective function 𝐽(𝑓). Through iterative updates, the feature selection 

mechanism evolves in alignment with the overarching task objectives.  

  

4.5.3 Feature Selection Outcome  

The culmination of the NCA-driven optimization endeavor yields a subset of the combined feature vector 𝐹, comprising 

the most discerning features as per the NCA criterion. These handpicked features epitomize the information relevant to 

the classification task, setting the stage for subsequent processing endeavors such as diabetic retinopathy detection.  

  

4.6 Classification using Support Vector Machine  

In the realm of classification algorithms, SVM stands as a stalwart, proficient in discerning patterns indicative of diabetic 

retinopathy within retinal images. In the pursuit of accurately identifying signs of diabetic retinopathy, SVM assumes a 

pivotal role, leveraging features meticulously selected through NCA.  

  

4.6.1 SVM Formulation  

At the heart of SVM lies the formulation aimed at tackling binary classification predicaments. This formulation unfolds 

against the backdrop of a training dataset depicted as:  

𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑠𝑒𝑡 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁, 𝑦𝑁)}               (17)  

  

Here:  

• 𝑥𝑖 embodies a feature vector, comprising NCA-selected features, delineated across a dimensionality of dd for the 𝑖𝑡ℎ 

sample.  
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• 𝑦𝑖 symbolizes the corresponding class label, with 𝑦𝑖 ∈ {−1, +1} denoting authenticity (−1) or lesion(+1).  

SVM endeavors to carve out a hyperplane characterized by a weight vector 𝑤 and a bias term 𝑏, effectively segregating 

the data points. The decision function is articulated as:  

 𝑓(𝑥) = 𝑠𝑖𝑔𝑛(𝑤 ⋅ 𝑥 + 𝑏)       (18)  

  

Where:  

• 𝑓(𝑥) assumes the mantle of the decision function, orchestrating the prediction of the class label for a given input feature 

vector 𝑥.  

• 𝑤 embodies the weight vector.  

• 𝑏 denotes the bias term.  

• The dot product (⋅) orchestrates the mathematical interplay.  

Pseudo Code for diabetic retinopathy with SVM and NCA-Selected Features  

Step 1: Feature Extraction and Selection  

Extract features from images using CNN and GLCM.  

Select the most informative features using NCA-based feature selection.  

Step 2: Data Preparation  

Split the dataset into training and testing sets.  

Encode class labels (e.g., -1 for authentic, +1 for lesion).  

Step 3: SVM Training  

Train an SVM classifier on the training data with NCA-selected features.  

Choose appropriate SVM parameters (e.g., C and kernel type).  

Step 4: SVM Testing  

Use the trained SVM model to predict class labels for the testing data.  

Step 5: Performance Evaluation  

Evaluate the classification performance using metrics like accuracy, precision, recall, and F1-score.  

Step 6: Interpretation and Reporting  

Examine the results to identify diabetic retinopathy in the tested images. Report 

the locations and characteristics of detected lesion.  

  

V. SIMULATION RESULTS AND DISCUSSION  

5.1 Database  

Image databases are an essential resource in the development of retinal image analysis algorithms, they greatly help 

researchers to evaluate and compare the methods developed with the work reported in the state of the art. They lead to 

the development of better algorithms. In this section, we present the different databases used in our work.  

  

5.1.1 DRIVE Image Database  

The Drive image database includes 40 color fundus images, 7 of which show pathologies. Images are acquired with a 

non-mydriatic retinograph (Canon RC5) with a 45-degree field of view (FOV). They are saved in JPEG format, with a 

size of 768×584 pixels. The image base is divided into two sets (20 images for training and the rest for testing). Manual 

segmentation of the vascular network is performed by two experienced ophthalmologists.  
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 (a)             (b)  

  
(b) (d)  

Figure 5: Sample images from the DRIVE database; (a): original image; (b): manual segmentation of the 

vascular network by the first ophthalmologist (c): manual segmentation of the vascular network by a second 

ophthalmologist; (d): mask of the original image 

  

5.1.2 Fundus Image  

This dataset, Fundus Image Registration Dataset (also known as FIRE) consists of 129 retinal images forming 134 image 

pairs. These image pairs are split into 3 different categories depending on their characteristics. The images were acquired 

with a Nidek AFC-210 fundus camera, which acquires images with a resolution of 2912×2912 pixels and a FOV of 45° 

both in the x and y dimensions. Images were acquired at the Papageorgiou Hospital, Aristotle University of Thessaloniki, 

Thessaloniki from 39 patients.  

  

5.2 Evaluation Parameters  

  

Table 1: Evaluation Parameters  

TP (True Positive)  “Represents the count of dark lesions in retinal images correctly detected”  

TN (True Negative)  “Indicates the number of regions correctly identified as not containing dark lesions in 

retinal images.”  

FP (False Positive)  “Represents the number of regions incorrectly identified as containing dark lesions in 

retinal images when they do not.”  

FN (False Negative)  “Indicates the number of dark lesions in retinal images that were missed or incorrectly 

identified as not present.”  

  

𝑇𝑃 + 𝑇𝑁 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

(19)  

𝑇𝑃 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   

𝑇𝑃 + 𝐹𝑃 

(20)  

𝑇𝑃 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =   

𝑇𝑃 + 𝐹𝑁 

(21)  

𝑇𝑁 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =   

𝑇𝑁 + 𝐹𝑁 

(22)  
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𝐹𝑃 + 𝐹𝑁 

𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒 =   

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 

(23)  

𝐹𝑃 

𝐹𝑎𝑙𝑠𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑅𝑎𝑡𝑒(𝐹𝑃𝑅) =   

𝐹𝑃 + 𝑇𝑁 

(24)  

2𝑇𝑃 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =   

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 

(25)  

5.3 Results  

5.3.1 Detection of Dark Lesions in Retinal Images  

As the number of patients with diabetes is increasing, therefore, early detection of diabetic retinopathy for regular 

screening can prevent vision loss and blindness. Indeed, the development of algorithms for the detection of dark lesions 

characteristic of DR (blood and micro-aneurysms) helps ophthalmologists to make the decision whether the suspicious 

signs of DR are present or not in the image to a computer-assisted mass screening system.  

  

Pre-Processing: Knowing that the illumination in the central regions relative to the edge of the image is not uniform and 

that the red (dark) elements appear with the strongest contrast in the green channel of the RGB color space, we work on 

this channel. Subsequently, an adaptive histogram equalization is applied to the green channel. In addition, the noise 

present in the image is eliminated by applying a median filter (Figure 6(a)).  

  

  
(a) (b) 

Figure 6: Extraction of red regions. (a) improved image; (b): The top hat of the enhanced image 

  

Extracting the Candidate Region: To extract the microaneurysm candidates we apply a thresholding operation on the top 

hat result with a threshold (58 ≤ 𝑇 ≤ 155) because after several trials we found that this threshold gives good results with 

decrease false positive.   

  

As a result, knowing that the micro-aneurysms appear in the form of tiny dots, we remove from the resulting binary image 

the small objects or pixels of size 10 and pixels of size 100 after, a subtraction is performed between these last two 

operations, results is shown in Figure 7.  
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 (a)                             (b)  

  
(b) (d)  

Figure 7: Candidate extraction (a) thresholding operation of the top hat image; (b) removing the objects 

from (10); (c) removal of objects from (100); (d) subtraction operation 

  

After the subtraction operation between the results of the elimination of pixels from 10 to 100, we notice that the vascular 

network has been eliminated, but there remains some segment of vessels that are considered noise. Segmentation and 

Elimination of the Vascular Network:    

Since the candidate extraction result (Figure 7(d)) represents the small vessels and some particles belong to the vascular 

networks which are considered as noise, it is therefore preferable to extract the vascular network to eliminate these noises.   

  

 
(a) b)  

Figure 8: Segmentation and elimination of the vascular network; a) Extraction of the vascular network; b) 

elimination of vascular network 
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As the vascular network belongs to the red regions like the micro-aneurysms, it appears in the result of the top hat, indeed; 

to extract the latter and separate it from the microaneurysms, we apply automatic thresholding to the image of the top hat 

(Figure 8(a)).   

  

In order to eliminate continuities and segments of vascular network which represents a false positive in candidate 

extraction result, we use a for loop in which we add the size of segmented vascular network and subtraction results (Figure 

7(d)). Final result is shown in the Figure 9.  

  

  
(a) (b)  

Figure 9: Final result for the detection of micro-aneurysms; (a) detection of micro aneurysms and 

elimination of false positives; (b) overlay on the original image 

  

The proposed method was tested on several images from different databases containing different image quality with 

several lesions such as hemorrhages and exudates. It can be seen that the micro-aneurysms have been well identified. 

They correspond to manual detection by ophthalmologists, the results were satisfactory in good quality images. In cases 

where the micro-aneurysms appear with low contrast or in dark images the results were acceptable. In addition, in the 

case where the images containing large hemorrhages, the results obtained were satisfactory, the algorithm is sensitive to 

the noise caused by the acquisition system. Here is some examples in Figure 10.  

  

 
Figure 10: Example for detection of micro-aneurysms  
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5.3.2 Hemorrhage Detection in Color Images of the Retina  

Hemorrhages are red spots, which are important in predicting the severity of NPDR. The problem in detecting 

hemorrhages is lack of information: variable size and shape, contrast can be weak or strong, color- although red varies 

from image to image. Indeed, the majority of work developed in this field detects in agiographic images which 

hemorrhages appear with strong contrast (Figure 11).  

  

  
Figure 11: Example of the presence of haemorrhages shown by a circle  

  

The proposed hemorrhage detection algorithm was tested on a series of images from the DiaretDB1 and DiaretDB0 

databases. These bases were chosen in relation to other existing bases because the different lesions: haemorrhages, micro-

aneurysms, hard and soft exudates are marked by experts. All large hemorrhages were successfully identified. However, 

in a few images, the algorithm missed a few hemorrhages that were small, low-contrast or located in the center of the 

macula or connected to the vascular network. These undetected hemorrhageswere eliminated with the macula or the 

vascular network. Clinically, ophthalmologists are not interested in small hemorrhages. Examples of hemorrhage 

detection are shown in Figure 12.  

  

  
Figure 12: Examples of haemorrhage detection  

  

Table 2: Comparative results of Different dataset using SVM classifier  

Parameters  MESSIDOR  DRIVE  STARE  

Accuracy  0.9907  0.9583  0.9722  

Error Rate  0.0093  0.0417  0.0278  

Sensitivity  0.9917  0.9583  0.9722  

Specificity  0.9968  0.9861  0.9907  

Precision  0.9917  0.9623  0.975  

False Positive Rate  0.0032  0.0139  0.0093  

F-Score  0.9915  0.9586  0.9721  
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MCC  0.9885  0.9462  0.9642  

Kappa Statistics  0.9753  0.8889  0.9259  

  

Table 3: Comparative results of Different dataset using different features in SVM classifiers  

Parameters  GLCM  CNN  Hybrid  

Accuracy  0.975  0.9853  0.9907  

Error Rate  0.025  0.0147  0.0093  

Sensitivity  0.975  0.9853  0.9917  

Specificity  0.9917  0.9951  0.9968  

Precision  0.9753  0.9861  0.9917  

False Positive Rate  0.0083  0.0049  0.0032  

F-Score  0.9749  0.9853  0.9915  

MCC  0.9668  0.9808  0.9885  

Kappa Statistics  0.9333  0.9608  0.9753  

  

The provided table presents the performance metrics of three different classification algorithms (not specified) on three 

different datasets: MESSIDOR, DRIVE, and STARE. Here is a brief analysis of the results:  

Accuracy: Accuracy measures the proportion of correctly classified instances over the total number of instances. The 

algorithms achieve high accuracy scores across all three datasets, ranging from 0.917 to 0.981. MESSIDOR has the 

highest accuracy (0.981), followed by STARE (0.963) and DRIVE (0.917).  

Error Rate: The error rate is the complement of accuracy and represents the proportion of misclassified instances. Lower 

error rates indicate better performance. The algorithms achieve relatively low error rates, ranging from 0.0185 to 0.0833. 

MESSIDOR has the lowest error rate (0.0185), followed by STARE (0.037) and DRIVE (0.0833).  

Sensitivity: Sensitivity, also known as the true positive rate or recall, measures the proportion of correctly classified 

positive instances (e.g., presence of a condition) out of all actual positive instances. The algorithms achieve perfect 

sensitivity scores (1.0) on MESSIDOR and DRIVE datasets, while STARE achieves a sensitivity of 1.0.  

Specificity: Specificity measures the proportion of correctly classified negative instances (e.g., absence of a condition) 

out of all actual negative instances. The algorithms achieve specificities ranging from 0.833 to 0.963. DRIVE has the 

lowest specificity (0.833), while MESSIDOR has the highest (0.963), and STARE falls in between (0.926).  Precision: 

Precision calculates the proportion of correctly classified positive instances out of all instances predicted as positive. It 

reflects the accuracy of positive predictions. The algorithms achieve precision scores ranging from 0.857 to 0.964. 

MESSIDOR has the highest precision (0.964), followed by STARE (0.931) and DRIVE (0.857).  False Positive Rate: The 

false positive rate measures the proportion of negative instances that are incorrectly classified as positive. Lower false 

positive rates indicate better performance. The algorithms achieve false positive rates ranging from 0.037 to 0.167. 

MESSIDOR has the lowest false positive rate (0.037), while DRIVE has the highest (0.167), and STARE falls in between 

(0.074).  F-Score: The F-Score, or F1-Score, is the harmonic mean of precision and recall. It provides a balanced measure 

of a classifier's performance on both positive and negative instances. The algorithms achieve high F-Scores ranging from 

0.923 to 0.982. MESSIDOR has the highest F-Score (0.982), followed by STARE (0.964) and DRIVE (0.923).  

The algorithms exhibit strong performance on all three datasets, achieving high accuracy, sensitivity, and precision, while 

maintaining low error rates and false positive rates. MESSIDOR generally performs the best across most metrics, followed 

by STARE, while DRIVE shows slightly lower performance. The choice of the most suitable algorithm would depend on 

the specific requirements of the classification task and the trade-offs between different performance metrics.  

  

Table 4: Comparative results of different classifiers on Drive dataset  

Parameters  SVM (Proposed)  KNN [14]  RF [22]  

Accuracy  0.9907  0.9444  0.9667  

Error Rate  0.0093  0.0556  0.0333  

Sensitivity  0.9917  0.9444  0.9667  

Specificity  0.9968  0.9815  0.9889  

Precision  0.9917  0.9545  0.9682  

False Positive Rate  0.0032  0.0185  0.0111  

F-Score  0.9915  0.9456  0.9669  

MCC  0.9885  0.9305  0.9562  

Kappa Statistics  0.9753  0.8519  0.9111  
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Table 4 presents a comprehensive comparison of the performance of different classifiers, namely proposed Support 

Vector Machine (SVM), k-Nearest Neighbors (KNN) [14], and Random Forest (RF) [22], based on various evaluation 

parameters using the DRIVE dataset. These parameters include accuracy, error rate, sensitivity, specificity, precision, 

false positive rate, F-Score, Matthews Correlation Coefficient (MCC), and Kappa statistics. The results indicate that the 

proposed SVM model achieves the highest accuracy (99.07%), sensitivity, specificity, precision, F-Score, MCC, and 

Kappa statistics compared to KNN and RF. Notably, the false positive rate is significantly lower for the proposed SVM 

model compared to KNN and RF, showcasing its effectiveness in minimizing misclassifications. This suggests that the 

proposed SVM model is superior in classifying retinal images for the detection of dark lesions, as supported by the 

provided citation references [14][22].  

  

VI. CONCLUSION  

This paper endeavors to automate the detection and classification of diabetic retinopathy from retinal fundus images, a 

critical task in ophthalmology. While previous methods have relied on handcrafted features and manually designed 

convolutional neural network (CNN) architectures for classification, this paper introduces a novel approach that integrates 

deep learning techniques with texture analysis to enhance detection accuracy. By combining CNN-based deep features 

extraction with Gray-Level Co-occurrence Matrix (GLCM) texture features extraction and employing a feature fusion 

process along with Neighborhood Component Analysis (NCA)-based feature selection, the proposed methodology aims 

to optimize feature representation. The classification stage utilizes Support Vector Machine (SVM) to classify retinal 

images based on the extracted features. Results obtained from the DRIVE dataset demonstrate the effectiveness of the 

proposed methodology, achieving an accuracy of 99.07% and outperforming previous research works. The results reveal 

that the proposed SVM model exhibits superior performance in detecting dark lesions compared to k-Nearest Neighbors 

(KNN) and Random Forest (RF) classifiers. Additionally, the comparative analysis across various evaluation parameters 

emphasizes the robustness and effectiveness of the proposed SVM model. Furthermore, detailed examinations of the 

detection of dark lesions and hemorrhages in retinal images elucidate the methodology's capability to accurately identify 

these critical indicators of diabetic retinopathy, thus highlighting its potential in aiding ophthalmologists in diagnosis and 

treatment decisions. Overall, this research signifies a significant advancement in automated retinal image analysis, 

promising improved early detection and management of diabetic retinopathy.A potential future direction could involve 

exploring the integration of advanced deep learning techniques, such as attention mechanisms or generative adversarial 

networks, to further enhance the robustness and accuracy of retinal lesion detection, especially in challenging scenarios 

with low contrast or complex image backgrounds.  
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