A Systematic Review of Warning Signs Related to the Bovine Disease Virus in Cattle Populations

Anushka Sharma1*, V Haripriya2, Dr. Vijay Upadhye3

1Assistant Professor, Department of Computer Science & Engineering, Sanskriti University, Mathura, Uttar Pradesh, India, Email Id- anushka@sanskriti.edu.in, Orcid Id- 0009-0002-0147-418X
2Assistant Professor, Department of Computer Science and Information Technology, Jain (Deemed to be University), Bangalore, India, Email Id- v.haripriya@jainuniversity.ac.in, Orcid Id- 0000-0003-0392-4367
3Associate Professor, Department of Microbiology, Parul University, PO Limda, Vadodara, Gujarat, India, Email Id- vijay.upadhye82074@paruluniversity.ac.in

Abstract

The Bovine disease viruses are a major worldwide concern to bovine herds, which has prompted some nations to implement monitoring programs for disease prevention and elimination. Timely response necessitates the recognition of warning symptoms associated with these infections. The maintenance of a disease-free status can provide problems for control efforts, underscoring the need to identify and comprehend risk factors. This research requires offering a complete assessment of potential risk factors for diseases affecting cattle viral infestation in herds of cows. Identify and evaluate warning signals related to bovine disease viruses, combining findings from much research to improve our knowledge of the clinical presentations and early indicators of these viral infections in cattle. A comprehensive search was performed in the CAB Abstracts, Scopus and PubMed databases using preset search keywords. The inclusion criteria centered on research looking at the early warning symptoms of bovine disease viruses. Following the identification of 800 papers, a rigorous screening procedure chose 20 for comprehensive analysis based on relevance, methodological quality and adherence to PRISMA criteria. The chosen research provided critical insights into the warning indications connected with bovine disease virus infections. Risk variables such as herd type, size, involvement in events as well as cattle importation were discovered and examined. The bottom plot gave a more detailed view of the link between livestock importation and illness prevalence. Despite the significant degree of variation across research, these pooled values provide indications of the relevance of widely investigated risk variables, assisting in the establishment and improvement of Bovine disease prevention strategies.

Keywords: Bovine Viruses, Cattle Herds, Warning Signs, Infections

INTRODUCTION

The bovine viral infections jeopardize the health, well-being and agricultural economy of animals as well as the worldwide bovine population. To provide a thorough examination of the many symptoms seen in impacted cow herds, therefore consolidating the body of information available on warning indications suggestive of bovine viral infections (1). The link between infection during first and third trimester of pregnancy, the development of a persistent infection and the eventual mortality from mucosal disease (MD) in immune-compliant animals was not established for four decades (2). The majority of nations where studies have been conducted have revealed that Bovine Viral Diarrhea Virus (BVDV) infections are prevalent; there are notable variations in incidence even between nations. The rate of antibody-positive cattle that are adults is estimated to be 60±85%, while the general incidence of perpetually infected (PI) animals is 1±2%, according to studies (3). To there are several warning indicators linked to viral infections in cows, including clinical and subclinical presentations. Clinical symptoms might include but are not limited to, fever, respiratory discomfort, nasal and ocular discharge, digestive abnormalities, along with reproductive problems (4). It illustrates the virus's capacity to spread over an area in the lack of organized containment measures. The management strategies have focused on immunization or the detection and eradication of PI animals. In more comprehensive settings, the latter is predicated on the identification of non-
infected and infected herds at the primary herd level, followed by the second step of removing infectious herds from PI animals (5). The intricate and diverse character of these diseases is highlighted by subclinical symptoms, which include changed blood parameters, immune responses and molecular markers. Furthermore, it has been emphasized how crucial it is to set farm bio-security measures in place to shield herds from BVDV diseases (6). Information obtained from removing the illness from herds has led to the development of tools for herd-level diagnostics. These increased understanding, along with more effective approaches for personalized diagnosis, has rendered a second control option practically and economically possible, whereas the first one continues to face challenges related to efficiency and safety (7). The quick decline in herd proportion of infection and frequency risk in regions where reduction has been implemented suggests that the epidemiological critical elements related to herd-level management of BVDV viruses can have been found. The several epidemiological difficulties that are pertinent to large-scale control are discussed in the work. In addition, it offers a broad framework for implementing the BVDV scheme that can be modified to meet the requirements in each nation and analyzes the relative significance of risk variables for the virus's introduction (8).

The study (9) analyzed the variables influencing the amount of actual direct losses brought by BVDV infection, a mixed linear model was used. The 44 papers that made up this analysis evaluated direct financial losses from BVDV during the last 30 years, spanning 15 different nations. The work of (10) presented in BVD is well understood and there are practical methods to disrupt the illness’s cycle of transmission at the farm and business levels, making management of the disease far more practicable in cow production systems than it is for other infectious diseases. Several nations throughout the world have started regional or national eradication programs for the BVD virus caused by the disease's severe economic effects. The article (11) comprised a meta-analysis of the biggest linked network of trials, with 17 vaccination regimens from 14 investigations. In line with other assessments, they could not find strong proof that vaccinations administered at or close to feedlot entry lower the risk of Bovine Respiratory Disease (BRD) diagnosis. The study (12) overviewed culture-independent meta-genomics research, bacteria belonging to the phyla Bacteroidetes, Firmicutes and Proteobacteria dominate the usual micro-flora in the female cow's reproduction tract. Actinobacteria, Fusobacteria and Tener cutes follow in order of prevalence. The paper (13) constrained primary results of the papers that were retrieved were summed up as follows: stable insects are the most proficient vectors, buffaloes are the primary non-cattle hosts and mechanical transmission via blood-sucking vectors is the major mechanism. The study (14) presented the case for enhancing cow herds' external bio-security as a means of preventing BRD. A population-based strategy for controlling BRD is demonstrated in the Norwegian Bovine Respiratory Syncytial Virus (BRSV) or Bovine Corona virus (BCoV) eradication program. The national cattle sector created the 41 voluntary programs. The work of (15) determined outcomes were subject to publication bias, but the likelihood of diarrheal consequences was high. It was shown that initiating c therapy in cattle greater than five days had positive outcomes. The study (16) examined 41 researches (94 sub-studies) from 21 different nations that assessed whether mixed illnesses were present in calf populations worldwide. BRV-Crypto had the highest estimated pooled prevalence followed by BRV-BCoV and BRV-ETEC. The paper (17) determined a provinces in Iran's southeast had the greatest combined prevalence of BVDV infection, while the provinces in the southwest had the lowest pooled seroprevalence. The work of (18) individuated was split up into three categories based on their ages: 8 months and under, 6 months and over, as well as 11 months and over, respectively. Age matching to the PI animals, a control population of female cattle with BVDV protein ELISA negative was used. The article (19) determined cattle that are infected (AI) with BVDV, exhibit a range of symptoms, but they usually recover in three weeks. Nothing is known about the clinical traits of AI cattle. The study (20) assessed the Southern Punjab, Pakistan, dairy cows' seroprevalence and risk factors for BVDV. Samples were taken from three of Southern Punjab's main divisions, Bahawalpur, Multan and Dera Ghazi Khan, which have large populations of animal.
METHODOLOGY

The comprehensive analysis offers a thorough synthesis of the most important indicators by analyzing the body of research on warning indications connected to viral illnesses of cows in cattle populations. The variety of source analysis, seeks to improve early detection methods and offer insightful information for efficient disease control and prevention in cow herds. Figure (1) shows the flow of study selection.

Search Approach

The following list of search phrases was used to query Citizenship Amendment Bill (CAB Abstracts), Scopus and PubMed databases. August 29, 2022, saw the completion of the last thorough search of three databases. On
September 12, 2023, following the full-text screening but before data processing, another search was conducted. Because Scopus and CAB Abstracts offer a selection for a year rather than particular publication dates, this further search was limited to PubMed. Four main areas are covered by the study questions: delayed detection, introduction, risk factors and BVDV. Search criteria for the introduction included an introduction, route, epidemic, incidence, prevalence and contain (denoting a keyword). Test approach, test scheme, test performance, test features, sensitivity, persist, diagnostic test and delayed detection were the last set of search phrases for delayed detection.

Selection of Studies

The full-text publications of studies that underwent peer review were considered. The risk criteria for the virus' presence, that could be used to establish the risk factors affecting introduction, were added, along with the probabilities in the ingestion of BVDV into cow herds. The studies that can be used to infer risk variables for delayed detection were included in the first screening. In a subsequent phase, the decision was made to reduce the search by concentrating on risk variables for BVDV existence and introduction. All of the references were imported by the researcher into Covidence, an online systematic review management system. A further evaluation was conducted by Audio Video Receiver (AVR) to determine whether any full-text papers that matched the inclusion criteria were suitable for meta-analyses. If a decision could not be reached among the several completed models, we found the model that considered the available data. The data did not contain subset-specific risk factor analysis. Comprehensive information was taken out of each chosen study, including information on the study's design, population size, location, diagnostic tests employed, risk variables examined in both univariable and multivariable analyses, effect size, confidence intervals and statistical method.

Meta-Analysis

After listed, all of the risk variables from the investigations that the quantitative evaluation was grouped based on their similarities. To establish a collective estimate of the chances of BVDV infection, random-effects meta-analysis was performed on the OR reported in at least two independent investigations for each group. To be included in the meta-analysis, variables have to be reorganized beforehand. The total meta-analysis for the introduction of cattle can incorporate this summary estimate.

RESULT

Eventually 20 papers were chosen to be a part of the meta-analysis. Individual cattle and herds are the focus units in the sample sizes, which include 15 to 34,954 animals. Viral and antibody levels in 23 beef cattle are investigated. Table (1) shows the papers chosen for the meta-analyses.

<table>
<thead>
<tr>
<th>S. No</th>
<th>Reference</th>
<th>Measure of outcome</th>
<th>Kind of livestock analysis</th>
<th>Interest unit for risk factor analysis</th>
<th>Type of Study</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>(21)</td>
<td>Virus</td>
<td>Beef</td>
<td>-</td>
<td>Cross-sectional</td>
<td>China</td>
</tr>
<tr>
<td>2.</td>
<td>(22)</td>
<td>Virus</td>
<td>Dairy</td>
<td>406 cattle</td>
<td>Cross-sectional</td>
<td>India</td>
</tr>
<tr>
<td>3.</td>
<td>(23)</td>
<td>Virus</td>
<td>Beef and Dairy</td>
<td>15 cattle</td>
<td>Cross-sectional</td>
<td>China</td>
</tr>
<tr>
<td>No.</td>
<td>(Ref)</td>
<td>Type</td>
<td>Species</td>
<td>Sample Size</td>
<td>Study Type</td>
<td>Country</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>4.</td>
<td>(24)</td>
<td>Virus</td>
<td>Dairy</td>
<td>34,954 cattle</td>
<td>Cross-sectional</td>
<td>China</td>
</tr>
<tr>
<td>5.</td>
<td>(25)</td>
<td>Virus</td>
<td>Beef</td>
<td>-</td>
<td>Cross-sectional</td>
<td>USA</td>
</tr>
<tr>
<td>6.</td>
<td>(26)</td>
<td>Virus</td>
<td>Beef</td>
<td>-</td>
<td>Cross-sectional</td>
<td>USA</td>
</tr>
<tr>
<td>7.</td>
<td>(27)</td>
<td>Antibodies</td>
<td>Beef and dairy</td>
<td>390 cattle</td>
<td>Cross-sectional</td>
<td>Australia</td>
</tr>
<tr>
<td>8.</td>
<td>(28)</td>
<td>Virus</td>
<td>Beef</td>
<td>189 herds</td>
<td></td>
<td>China</td>
</tr>
<tr>
<td>9.</td>
<td>(29)</td>
<td>Virus and Antibodies</td>
<td>Beef</td>
<td>23 cattle</td>
<td>Case-control</td>
<td>USA</td>
</tr>
<tr>
<td>10.</td>
<td>(30)</td>
<td>Antibodies</td>
<td>Dairy and beef</td>
<td>-</td>
<td>Cross-sectional</td>
<td>-</td>
</tr>
<tr>
<td>11.</td>
<td>(31)</td>
<td>Virus and antibodies</td>
<td>Dairy</td>
<td>-</td>
<td>Cross-sectional</td>
<td>India</td>
</tr>
<tr>
<td>12.</td>
<td>(32)</td>
<td>Virus</td>
<td>Beef and dairy</td>
<td>-</td>
<td>Cross-sectional</td>
<td>Australia</td>
</tr>
<tr>
<td>13.</td>
<td>(33)</td>
<td>Virus and antibodies</td>
<td>Beef and dairy</td>
<td>-</td>
<td>Cross-sectional</td>
<td>India</td>
</tr>
<tr>
<td>14.</td>
<td>(34)</td>
<td>Virus</td>
<td>Dairy and beef</td>
<td>-</td>
<td>Cross-sectional</td>
<td>Ireland</td>
</tr>
<tr>
<td>15.</td>
<td>(35)</td>
<td>Antibodies</td>
<td>Combination</td>
<td>-</td>
<td>Cross-sectional</td>
<td>Poland</td>
</tr>
<tr>
<td>16.</td>
<td>(36)</td>
<td>Virus and antibodies</td>
<td>Dairy and beef</td>
<td>-</td>
<td>Cross-sectional</td>
<td>-</td>
</tr>
<tr>
<td>17.</td>
<td>(37)</td>
<td>Virus</td>
<td>Combination</td>
<td>2,542 herds</td>
<td>Cross-sectional</td>
<td>Germany</td>
</tr>
<tr>
<td>18.</td>
<td>(38)</td>
<td>Virus</td>
<td>Beef</td>
<td>39 herds</td>
<td>Cross-sectional</td>
<td>Ireland</td>
</tr>
<tr>
<td>19.</td>
<td>(39)</td>
<td>Virus</td>
<td>Combination</td>
<td>17,186 herds</td>
<td>Cross-control</td>
<td>Northern Ireland</td>
</tr>
</tbody>
</table>
OVERVIEW OF THE RISK FACTORS

Characteristics of Herds and Animals

The variety of herd and animal parameters were examined, including mortality, region, herd type, herd size, sex, age and milk outset. The variables that described the size, kind and geography of the herd were included among the characteristics of the herd. There was one research that included quantitative data on sex and milk production, thus no more analysis could be done in these areas. Because the age groups in those two trials were not similar, a meta-analysis was not appropriate. Three research examined infection with various pathogens linked to BVD infection; however, because diverse pathogens were investigated, comparisons across the studies were not possible. The mortality was taken into account in five studies; it was left out of the meta-analysis since it was thought to be more of an endpoint than a risk indicator for BVDV. The outcome of the characteristics of Herds and Animals is shown in Figure (2) (a-b).

Figure (2). (a) Kinds of herd (b) size of herd

(Source: Author)
Note: Forest plot: Herd type impact on cattle viral diarrhea virus infection. Upper plot: Using beef herds as an example. Lower plot: Size of herd per additional animal. *Univariable result; #Research identified as an outlier in significant case analysis.

Movement of Cattle

The importation of cattle, cattle markets or exhibitions and other movements were among the movement features that were examined. The performed study on the purchase of cattle, which does not entail a monetary transfer along with the introduction of animals into a herd, mostly calves exchanged and cattle shelter shared with other farms in the summer. Analyzed livestock sales, which could not be compared to the mobility of cattle examined in the meta-analysis and cattle introduction at markets or cattle exhibitions. To inform strategic actions for disease management and prevention in cow herds, the study examined the complex interaction between the movement of cows and the transmission of the virus. It sheds light on possible risk features elements and contributing variables. The outcome of the movement of cattle is shown in Figure (3) (a-b).

![Figure (3). (a) Involvement of market (b) Introduction of cattle](Source: Author)

Note: Forest plot: Bovine viral diarrhea virus infection based on show/marketplace attendance (upper) and animal introduction (bottom). *Univariable result; #Research identified as an outlier in significant case analysis.

Neighborhood Risk

The neighborhood risk fragmentation, the surrounding environment, cow density, neighbor herds with BVD, interactions with other kinds of animals and grazing were factors linked to neighborhood risk. The mentioned neighborhood risk indicators were those described grassland, cattle density and interaction with other animal species. A meta-analysis was not feasible because studies on cow densities and more frequently, using such different
techniques, studies on BVD-positive neighbor herds. The amount of space between (positive) adjoining herds and their quantity in a 5 or 10-kilometer radius around the farm are described by the two variables. The existence of sheep, pigs, deer or other animals, as well as their interaction or closeness, were factors that related to contact involving other animal species. Contact between other animal species could not be the subject of a meta-analysis. The outcome of Neighborhood Risk is shown in Figure (4).

![Figure (4). Outcome of neighborhood risk](Source: Author)

Note: This is a forest plot showing how bovine viral diarrhea virus infection is affected by herd grazing (upper plot) and cow interaction across the fence (lower plot) on pasture* give a short form in this.

DISCUSSION

The process of this methodical review of the literature has obtained a thorough understanding of the potential BVD risk variables in cow herds. To lessen the variability of results brought by various cattle production techniques on other continents they carried out several meta-analyses and produced pooled estimates for a variety of recognized risk factors. Even though there was a great deal of heterogeneity in risk variables between studies. The quantity and kind of the herd were two features that were examined. Larger herds were linked to greater probabilities of BVD infection, according to the majority of studies. Infection risk was observed to be greater in dairy herds than in herds of beef. Participation in exhibitions or markets is another risk factor associated with the migration of cattle that has been extensively researched. The degree of association between risk factors and BVD disease was demonstrated in each study that made up our meta-analyses. These must be taken into account while evaluating the investigation's findings.

CONCLUSION

To avoid and eliminate the disease, the current study finishes with a complete assessment of the risk factors connected to the spread of the cattle disease virus in cow herds. It emphasizes the need of early warning sign identification. The 20 relevant papers were selected for in-depth analysis after a comprehensive search of prestigious databases, including PubMed, CAB Abstracts and Scopus, according to predefined criteria. The study's findings offer important new insights into the warning indicators associated with bovine disease virus infections. Important risk factors, such as herd size, type, involvement in events and cattle imports, were identified as well as thoroughly examined. The study revealed a complicated relationship between the movement of animals and illness occurrence, yet it offered a deeper knowledge of this important element. Even though the selected studies are diverse, the aggregate values shown in this analysis provide informative indicators on the significance of well-researched risk
variables. This information can help with the creation and enhancement of methods for reducing bovine disease. The development and improvement of strategies for keeping cows healthy can benefit from this information. To maintain disease-free bovine herds globally, early identification, surveillance techniques and risk factor knowledge are critical. Through the compilation and synthesis of current knowledge, this study seeks to support continuing efforts to manage and lessen the effect of bovine disease viruses on global cattle populations. In the future, studies should integrate genetic methods and modern diagnostic technology to investigate the changing landscape of warning indicators associated with the bovine disease virus. Develop prediction models for early identification so that proactive intervention techniques can be implemented. This should be the main emphasis of future research.

REFERENCES

[20] Ur-Rehman, H. DETERMINATION OF SERO-PREVALENCE AND ASSOCIATED RISK FACTORS OF BOVINE VIRAL DIARRHEA VIRUS (BVDV) IN BOVINE POPULATION FROM SOUTHERN PUNJAB, PAKISTAN. Doi: 10.36899/JAPS.2020.3.0064

