http://www.veterinaria.org

Article Received: 15/09/2024 Revised: 03/10/2024 Accepted: 17/10/2024

Investigating the Safety and Hepatoprotective Efficacy of Alkaline Extract of Tephrosia purpurea in a Wistar Rat Model

Dr. Manisha Goyal^{1*}, Prof. (Dr.) Govind Sahay Shukla², Dr. Vishwendra Singh³, Dr. Ravi Pratap Singh⁴

^{1*}Associate Professor, PG Department of Rasa Shastra evam Bhaishjya Kalpana, PGIA, DSRRAU, Jodhpur
²Professor and HOD, PG Department of Rasa Shastra evam Bhaishjya Kalpana, PGIA, DSRRAU, Jodhpur
³MD Scholar, PG Department of Rasa Shastra evam Bhaishjya Kalpana, PGIA, DSRRAU, Jodhpur
⁴Assistant Professor, PG Department of Rasa Shastra evam Bhaishjya Kalpana, PGIA, DSRRAU, Jodhpur

ABSTRACT

Liver damage has become a widespread issue and is a significant metabolic disorder that leads to high rates of mortality and illness worldwide. Finding effective treatments has become a crucial topic in current research since numerous medications can cause toxic effects that harm the liver, thereby increasing interest in the healing properties of medicinal plants with hepatoprotective capabilities to alleviate or heal liver diseases. Various herbal plants have been studied for their ability to protect the liver from damage during the treatment of different liver conditions, with *Sharpunkha* (*Tephrosia Purpurea*) being one notable example. This study focuses on the hepatoprotective activity of Sharpunkha Kshar against liver toxicity which was induced by paracetamol in albino rats. Two distinct experiments were carried out: one for acute toxicity testing to confirm safety and another utilizing a paracetamol induced liver toxicity model to assess therapeutic effects. The evaluation of acute toxicity was conducted according to the OECD guideline 423. The findings demonstrate that Sharpunkha Kshar is safe even at a high dose of 2000 mg/kg and shows hepatoprotective effects on par with Liv 52 at a dosage of 200 mg/kg, which includes reducing liver cell death and normalizing biochemical markers.

Keywords: Sharpaksha lavana, yakritpliha roga, alkaline ash, paracetamol-induced hepatotoxicity, albino rats

Introduction

Numerous herbal plants have been studied for their potential to protect the liver and treat various liver conditions, *Sharpunkha (Tephrosia purpurea)* being one of them. Sharpunkha was first introduced by Acharya Shusrut as he categorized medicinal plants into groups.(1) It was included in the *Sursadigana* (A group of herbal drugs). In Bhavprakash Samhita, Sharpunkha is referenced for the treatment of "*yakrit-pleeha roga*" (liver and spleen disorders).(2) Whole plant powder and Water-soluble Alkaline extract of *Tephrosia purpurea* is often applied to manage conditions like liver and spleen-related disorders and other digestive problems.(3) Hepatotoxicity continues to be a major health issue, frequently triggered by medications such as paracetamol.(4)Sharpunkha Kshar (alkaline extract of *Tephrosia purpurea* Linn.), which is traditionally used in Ayurveda for liver ailment and was used in this research to assess its safety and effectiveness in albino rats.

Drugs and chemicals

Tephrosia purpurea (whole plant) was procured from the Dr. SRRAU campus in Jodhpur, and authenticated using microscopic, physicochemical, and phytochemical analysis. Lupeol, Rutin, quercetin, rotenone, and beta-sitosterol were identified as biomarkers in the Tephrosia purpurea through HPTLC fingerprinting. For the experimental study, Sharpunkha Kshar was utilized. The preparation of Sharpunkha Kshar was done in accordance with the guidelines of the Ayurvedic Formulary of India. The Kshar thus obtained was utilized for the experimental study.

Animals

Wistar albino rats of both sexes, each weighing approximately 200±20 gm, were obtained from the Animal house associated with Bilwal Medchem and Research Laboratory, Jaipur. The animals were kept under standard husbandry conditions, including a temperature range of 22±3°C, a relative humidity of 50–60%, and a 12-hour light and dark cycle. The chosen animals underwent a 7-day acclimatization period prior to the experiments. They were provided with standard rat pellet feed and drinking water. The experiments proceeded with the approval of the Institutional Animal Ethics Committee (BMRL/AD/CPCSEA/IAEC/2023/02/9) and in compliance with the guidelines set by CPCSEA, New Delhi.

Acute Toxicity Assessment

The acute toxicity of Sharpunkha Kshar was assessed in two sets of albino rats in accordance with OECD guideline 423(5): Group 1: Administered 300 mg/kg orally (n=3).

Group 2: Administered 2000 mg/kg orally (n=3).

http://www.veterinaria.org

Article Received: 15/09/2024 Revised: 03/10/2024 Accepted: 17/10/2024

Table 1- Weight and Dose determination in group 1

Group 1			
Marking	Weight (gm)	Dose in mg	Dose in ml (20% w/v Solution)
Н	155	46.5	0.23
В	164	49.2	0.25
T	171	51.3	0.26

Table2- Weight and Dose determination in group 2

Group 2						
Marking	Weight (gm)	Dose in mg	Dose in ml (20% w/v Solution)			
Н	184	368	1.84			
В	176	352	1.76			
T	159	318	1.59			

Observations are monitored over 14 days such as behavioral alterations, condition of the skin and fur, status of mucous membranes, and physiological symptoms such as salivation, lethargy, and convulsions. Additionally, food and water consumption, weight variations, and mortality rates were recorded.

Hepatoprotective Investigation

A model of PCM-induced liver toxicity was utilized:

- Subjects: Eighteen healthy albino Wistar rats were separated into three groups (n=6/group).
- Induction: 1000 mg/kg of PCM was administered orally for a duration of seven days.

Group design

- Group 1 (Control): this group was treated with distilled water (5 mL/kg/day).
- Group 2 (Standard): treated with Liv 52 (800 mg/kg/day).
- Group 3 (Test): treated Sharpunkha Kshar (200 mg/kg/day).

Dosing Chart

Table 3- Dose administration of Paracetamol to induce the hepatotoxicity in Group-1

Group 1	Group 1							
Marking	Weight	Dose of PCM		Dose in ml (Distilled Water)				
	(gm)	Dose in mg	Dose in ml					
H	153	153	1.53	0.765				
В	147	147	1.47	0.735				
T	169	169	1.69	0.845				
HB	168	168	1.68	0.84				
BT	175	175	1.75	0.875				
HT	195	195	1.95	0.975				

Table 4- Dose administration of Paracetamol to induce the hepatotoxicity in Group-2

Group 2	Group 2							
		Dose of Po	CM	Dose of Liv 52	2			
Marking	Weight (gm)	Dose in mg	Dose in ml	Dose in mg	Dose in ml			
H	175	175	1.75	140	1.4			
В	169	169	1.69	135.2	1.352			
T	158	158	1.58	126.4	1.264			
HB	176	176	1.76	140.8	1.408			
BT	178	178	1.78	142.4	1.424			
HT	169	169	1.69	135.2	1.352			

Table 5- Dose administration of Paracetamol to induce the hepatotoxicity in Group-3

Group 3							
		Dose of PCM	1	Sharpunkha Kshar			
Marking	Weight(gm)	Dose(mg)	Dose(ml)	Dose(mg)	Dose(ml)		
H	185	185	1.85	37	0.37		
В	195	195	1.95	39	0.39		
T	174	174	1.74	34.8	0.348		

http://www.veterinaria.org

Article Received: 15/09/2024 Revised: 03/10/2024 Accepted: 17/10/2024

HB	165	165	1.65	33	0.33
BT	157	157	1.57	31.4	0.314
HT	169	169	1.69	33.8	0.338

Evaluated Parameters:

- Biochemical indicators: SGOT, SGPT, Serum ALP, and Serum Bilirubin levels.
- Histopathological analysis of liver tissue for signs of necrosis, degeneration, and edema.

Statistical test

Statistical evaluation using Student's t-test and ANOVA followed by Dunnett's post hoc test.

Tissue Processing and Staining:

Liver tissues were preserved using 10% buffered formalin. Dehydration involved the use of increasing concentrations of alcohol. Sections measuring 5 μ m in thickness were sliced and stained with hematoxylin and eosin. The prepared slides were analyzed under a light microscope for histopathological assessment. Prepared slides were examined under a light microscope for histopathological evaluation.

Results & observation:

Acute toxicity

During the 14-day observation period, no signs of toxicity were observed in either group. Behavioral parameters, food and water consumption, and body weight remained within normal ranges. Both the 300 mg/kg and 2000 mg/kg doses were well tolerated, with no recorded mortality.

Behavioral Observation

Table 5- Behavioral observations of Group-1 in Oral Acute toxicity

Group 1			•		·	
Observation	30min.	4hr.	24hr.	48hr.	1w	2w
Skin and Fur	N	N	N	N	N	N
Eyes	N	N	N	N	N	N
Mucous Membrane	N	N	N	N	N	N
Salivation	Ab	Ab	Ab	Ab	Ab	Ab
Lethargy	Ab	Ab	Ab	Ab	Ab	Ab
Sleep	N	N	N	N	N	N
Coma	Ab	Ab	Ab	Ab	Ab	Ab
Convulsions	Ab	Ab	Ab	Ab	Ab	Ab
Tremors	Ab	Ab	Ab	Ab	Ab	Ab
Diarrhea	Ab	Ab	Ab	Ab	Ab	Ab
Morbidity	Ab	Ab	Ab	Ab	Ab	Ab
Mortality	Ab	Ab	Ab	Ab	Ab	Ab
Weight changes (%)	0	0	1.324	2.574	6.241	13.854
Food consumption (gm)/rat	2.5	7.65	12.58	25.84	85.74	170.65
Water consumption (ml)/rat	4	5	40	75	255	520

Table 6- Behavioral observations of Group-2 in Oral Acute toxicity

Group 2						
Observation	30min.	4hr.	24hr.	48hr.	1w	2w
Skin and Fur	N	N	N	N	N	N
Eyes	N	N	N	N	N	N
Mucous Membrane	N	N	N	N	N	N
Salivation	Ab	Ab	Ab	Ab	Ab	Ab
Lethargy	Ab	Ab	Ab	Ab	Ab	Ab
Sleep	N	N	N	N	N	N
Coma	Ab	Ab	Ab	Ab	Ab	Ab
Convulsions	Ab	Ab	Ab	Ab	Ab	Ab
Tremors	Ab	Ab	Ab	Ab	Ab	Ab
Diarrhea	Ab	Ab	Ab	Ab	Ab	Ab
Morbidity	Ab	Ab	Ab	Ab	Ab	Ab
Mortality	Ab	Ab	Ab	Ab	Ab	Ab
Weight changes (%)	0	0	2.651	3.147	7.617	14.954
Food consumption (gm)/rat	3.45	8.74	13.54	21.36	90.45	181.36
Water consumption (ml)/rat	2.5	4	35	80	265	545

http://www.veterinaria.org

Article Received: 15/09/2024 Revised: 03/10/2024 Accepted: 17/10/2024

Hematology Observation

Table 7- Hematological observations of Group-1 in Oral Acute toxicity

Group 1	8	•	v	
Tests	Н	В	T	
RBC (x10 /mm ³)	7.65	8.18	7.96	
PCV (%)	41.36	45.74	39.68	
Hb (g/dl)	14.85	13.65	15.74	
WBC (X10 ³ /mm ³)	9.32	12.74	9.91	
Neutrophils (%)	24.32	21.36	25.74	
Lymphocytes (%)	74.19	76.35	74.35	
Eosinophils (%)	1.35	1.85	2.47	
Monocytes (%)	2.45	1.95	2.12	
Basophils (%)	0.0	0.0	0.0	
Platelets (X10 ³ /mm ³)	685	745	673	

Table 8- Hematological observations of Group-2 in Oral Acute toxicity

Group 2			
Tests	Н	В	T
RBC	8.95	8.15	9.15
x10 /mm³)			
PCV (%)	41.32	38.87	44.58
Hb(g/dl)	15.85	14.73	14.81
WBC(X10³/mm³)	14.36	13.74	15.71
Neutrophils (%)	31.25	29.74	24.69
Lymphocytes(%)	67.85	69.32	71.65
Eosinophils(%)	3.54	2.41	1.75
Monocytes(%)	2.47	2.37	2.17
Basophils(%)	0.00	0.00	0.00
Platelets(X10 ³ /mm ³)	758	691	789

Biochemical tests

Table 9- Biochemical analysis of Group 1&2 in Oral Acute toxicity

Name of Test	Group 1	•	•	Group 2		
	Н	В	T	Н	В	T
Protein (g/dl)	6.41	6.18	5.96	5.96	6.67	6.15
Albumin (g/dl)	3.47	2.94	3.65	3.74	3.87	3.91
Globulin (g/dl)	2.75	2.96	2.95	2.98	3.15	2.85
Glucose (mg/dl)	95	96	75	77	96	83
Urea	18.36	17.69	19.74	16.58	20.65	19.28
nitrogen(mg/dl)						
Creatinine (mg/dl)	0.27	0.65	0.48	0.37	0.57	0.69
Bilirubin (mg/dl)	0.35	0.41	0.39	0.39	0.51	0.41
Cholesterol (mg/dl)	75	84	91	85	95	82

Table 10- Biochemical mean comparison of Group 1&2 in Oral Acute toxicity

Name of Test	Group 1	Group 2	Reference Value
	Mean±SEM	Mean±SEM	
Protein (g/dl)	6.18±0.130	6.26±0.212	5.6 - 7.6
Albumin (g/dl)	3.35±0.213	3.84±0.051	2.8 - 4.8
Globulin (g/dl)	2.89±0.068	2.99±0.087	1.8 - 3.2
Glucose (mg/dl)	88.67±6.839	85.33±5.608	50 – 135
Urea nitrogen(mg/dl)	18.60±0.603	18.84±1.196	15 - 21
Creatinine (mg/dl)	0.47±0.110	0.54±0.093	0.2 - 0.8
Bilirubin (mg/dl)	0.38±0.018	0.44±0.037	0.2 - 0.55
Cholesterol (mg/dl)	83.33±4.631	87.33±3.930	40 – 130

http://www.veterinaria.org

Article Received: 15/09/2024 Revised: 03/10/2024 Accepted: 17/10/2024

Hepatoprotective study

Table 11- SGOT analysis of Group 1,2 & 3

SGOT (IU/L)	Group 1	Group 2	Group 3
Н	236	94	156
В	245	96	126
T	215	89	142
НВ	236	114	135
BT	195	96	120
HT	219	84	169

Table 12-SGPT analysis of Group 1,2 & 3

SGPT(IU/L)	Group 1	Group 2	Group 3			
Н	195	86	110			
В	186	75	123			
T	174	69	142			
НВ	169	58	142			
BT	175	75	126			
HT	165	69	105			

Table 13- Serum alkaline phosphates analysis of Group 1,2 & 3

Serum Alkaline Phosphates (IU/L)	Group 1	Group 2	Group 3
Н	354	156	215
В	296	198	269
T	315	145	159
НВ	275	169	163
BT	296	175	148
HT	245	169	169

Table 14- Total serum bilirubin analysis of Group 1,2 & 3

Total Serum Bilirubin (g/dl)	Group 1	Group 2	Group 3	
Н	0.23	0.19	0.24	
В	0.31	0.21	0.31	
T	0.29	0.24	0.25	
НВ	0.31	0.18	0.24	
BT	0.25	0.21	0.23	
НТ	0.29	0.25	0.31	

Biochemical Parameters (Hepatoprotective Study)

Table 15- Mean comparison of Biochemical parameters of Group 1,2 & 3

Parameter	Group 1	Group 2	Group 3
SGOT (IU/L)	224.33 ± 7.47	95.50 ± 4.16	141.33 ± 7.55
SGPT (IU/L)	177.33 ± 4.57	72.00 ± 3.78	168.67 ± 7.35
ALP (IU/L)	296.83 ± 15.01	168.67 ± 7.35	187.17 ± 18.90
Bilirubin (mg/dL)	0.280 ± 0.013	0.213 ± 0.011	0.263 ± 0.015

Statistical Analysis

Dunnett's multiple comparison test revealed significant reductions (p < 0.0001) in SGOT, SGPT, and ALP levels in Groups 2 and 3 compared to Group 1, with Group 3 showing comparable efficacy to Liv 52.

Table 15- Statistical comparison of Biochemical parameters of Group 1,2 & 3

Dunnett's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Significant	Summary	Adjusted P Value
SGOT					
Group 1 vs. Group 2	128.8	106.1 to 151.6	Yes	****	< 0.0001
Group 1 vs. Group 3	83.00	60.27 to 105.7	Yes	****	< 0.0001
SGPT					
Group 1 vs. Group 2	105.3	88.04 to 122.6	Yes	****	< 0.0001

http://www.veterinaria.org

Article Received: 15/09/2024 Revised: 03/10/2024 Accepted: 17/10/2024

Group 1 vs. Group 3	52.67	35.38 to 69.96	Yes	****	< 0.0001
Serum ALP					
Group 1 vs. Group 2	128.2	77.92 to 178.4	Yes	****	< 0.0001
Group 1 vs. Group 3	109.7	59.42 to 159.9	Yes	***	0.0002
Serum Bilirubin					
Group 1 vs. Group 2	0.06667	0.02086 to 0.1125	Yes	**	0.0055
Group 1 vs. Group 3	0.01667	0.02914 to 0.06247	No	ns	0.5890

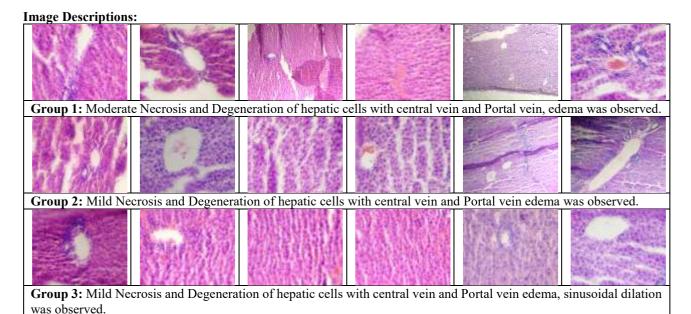
After Dunnett's multiple comparisons test between Group 1 vs. Group 2 and Group 1 vs. 3, the mean difference, at a 95% Confidential interval of difference, and P Values to determine the significance were calculated.

The mean difference for SGOT between Group 1 vs. Group 2 is 128.8 and 83.0 between Group 1 and 3, and the Mean difference for SGPT between Group 1 vs. Group 2 is 105.3 and 52.67 between Group 1 and 3, the Mean difference for Serum ALP between Group 1 vs. Group 2 is 128.2 and 109.7 between Group 1 and 3, the Mean difference for Serum bilirubin between Group 1 vs. Group 2 is 0.06667 and 0.01667 between Group 1 and 3.

P value significance

P -value in group-1 vs group-2 is less than 0.0001. it is suggested that SGOT is significantly decreased in group-2 as compared to group-1.

p-value in group-1 vs group-3 is also less than 0.0001. it is suggested that SGOT is significantly decreased in group-3 as compare to group -1.


p-value in group-1 vs group-2 is also less than 0.0001. it is suggested that SGPT is significantly decreased in group-2 as compare to group -1.

Histopathology

Group 1: Moderate necrosis and edema.

Group 2: Mild necrosis and edema.

Group 3: Mild necrosis, reduced edema, and sinusoidal dilation.

Discussion

The present study investigated the acute toxicity and hepatoprotective activity of *Sharpunkha Kshar* in albino Wistar rats using a paracetamol-induced hepatotoxicity model. The findings demonstrate that *Sharpunkha Kshar* is safe at doses up to 2000 mg/kg and exhibits significant hepatoprotective activity comparable to the standard hepatoprotective agent, Liv-

The acute toxicity study revealed no mortality or behavioral abnormalities in rats treated with *Sharpunkha Kshar* at doses of 300 mg/kg and 2000 mg/kg. Parameters such as food and water intake, body weight gain, and hematological and biochemical indices remained within normal ranges.

In the present study, control group exhibited marked elevation in serum SGOT, SGPT, ALP, and bilirubin levels. Treatment with *Sharpunkha Kshar* (200 mg/kg) significantly reduced the serum levels of SGOT, SGPT, and ALP compared to the toxic control group (p < 0.0001), indicating effective restoration of liver function. Although the reduction in bilirubin

REDVET - Revista electrónica de Veterinaria - ISSN 1695-7504

Vol 25, No. 1 (2024)

http://www.veterinaria.org

Article Received: 15/09/2024 Revised: 03/10/2024 Accepted: 17/10/2024

levels was not statistically significant, the trend towards normalization suggests partial correction of impaired bilirubin metabolism. Microscopic examination of liver tissues further corroborated the biochemical observations. The control group showed moderate necrosis, edema, and degeneration of hepatocytes, while the Liv-52-treated group exhibited only mild pathological changes. Similarly, *Sharpunkha Kshar*-treated rats displayed mild necrosis and reduced edema with sinusoidal dilation, indicating substantial hepatocellular protection.

Earlier research showed that oxidative stress in the liver is marked by reduced levels of glutathione (GSH) as well as lower activities of antioxidant enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-S-transfe*Rasae* (GST), along with a rise in malondialdehyde (MDA) production. Glutathione (GSH), recognized as a key non-enzymatic antioxidant, is vital for safeguarding cells and its abundance significantly influences how vulnerable tissues are to oxidative injury.(6)

The hepatoprotective effect of *Sharpunkha Kshar* can be attributed to its phytoconstituents such as lupeol, rutin, quercetin, and beta-sitosterol, which are known for their antioxidant, anti-inflammatory, and membrane-stabilizing properties. These bioactive compounds likely mitigate oxidative stress and enhance hepatic cell regeneration.

Although Liv-52 showed greater efficacy in reducing biochemical markers than *Sharpunkha Kshar*, the latter demonstrated a significant protective effect and was well tolerated.

Its effectiveness is linked to its antioxidant characteristics, which help decrease oxidative stress and enhance liver function. These results are consistent with traditional beliefs concerning Tephrosia purpurea's potential for liver protection.

Conclusion

Alkaline extract of Tephrosia purpurea is considered safe at doses up to 2000 mg/kg and shows protective effects on the liver. Administered at 200 mg/kg, it significantly mitigates liver damage caused by PCM-induced hepatotoxicity, suggesting it could serve as a potential replacement for Liv 52 in liver protection.

Future Scope

Future research with larger sample sizes and clinical trials are advised to validate these results.

References

- 1. Kaviraj Ambikadatta Shastri. Sushrut Samhita with commentary Ayurveda Tatvasandipika. 2016th ed. Varanasi: Chaukhamba Sanskitti Sansthan; 2016.
- 2. Shri Bhavamisra. Bhavaprakash Chikithsa. Vol. 2. Varanasi: Chaukambha sanskrit Sansthan; 2010. 11–17 p.
- 3. Sharma M, Gaur A, Vishwakarma P, Goel RK, Saxena KK. Evaluation of hepatoprotective potential of aqueous extract of Withania somnifera in albino rats. Int J Basic Clin Pharmacol. 2021 Feb 22;10(3):255.
- 4. Mahadevan SBK, McKiernan PJ, Davies P, Kelly DA. Paracetamol induced hepatotoxicity. Vol. 91, Archives of Disease in Childhood. 2006. p. 598–603.
- 5. Oecd. OECD/OCDE 423 OECD GUIDELINE FOR TESTING OF CHEMICALS Acute Oral Toxicity-Acute Toxic Class Method INTRODUCTION. 2001.
- 6. Kaur M. Oxidative Stress Response in Liver, Kidney and Gills of Ctenopharyngodon Idellus (Cuvier & Walenciennes) Exposed To Chlorpyrifos. MOJ Biology and Medicine. 2017 Jul 20;1(4).