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 Abstract: Workload prediction is essential for efficient cloud resource scheduling, enabling early provisioning, 

minimized latency, and consistent service quality under variable demand. Accurate prediction is hindered by abrupt load 

changes, seasonal shifts, and complex multivariate relationships. Many existing models face high-dimensional feature 

overhead, limited adaptability, or overfitting when applied to volatile workloads. This study introduces a hybrid 

framework integrating Bacterial Foraging Optimization for optimal feature subset selection with a Long Short-Term 

Memory network to model long-range temporal dependencies. Experiments on a benchmark cloud workload dataset show 

that the proposed model achieves an RMSE of 0.142 and an MAE of 0.097, outperforming the best baseline by 8.39% in 

accuracy and reducing computational time by 22.99%. The findings highlight the model’s capability to deliver precise 

predictions while lowering operational complexity, offering a balanced solution for accuracy and efficiency in dynamic 

cloud environments. 
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1 Introduction 

Workload prediction in cloud computing environments serves as an essential component in achieving operational 

efficiency, cost-effectiveness, and service quality assurance. By anticipating future resource demands, cloud service 

providers can allocate computational, storage, and network resources in a manner that prevents both under-provisioning 

and over-provisioning to maintain balanced system performance [1-2]. Accurate prediction further assists in dynamic 

scaling, reducing energy consumption, and improving service-level agreement (SLA) compliance. In large-scale systems, 

workloads often exhibit complex behaviors characterized by seasonal trends, sudden bursts, and interdependent resource 

usage patterns. Capturing these patterns requires predictive models capable of integrating multivariate data streams over 

different time horizons. Additionally, workload prediction enables better admission control, pricing strategies, and 

maintenance scheduling [3]. As a result, it has become a critical research domain that directly impacts the sustainability, 

reliability, and profitability of modern cloud infrastructures. 

Despite its strategic importance, workload prediction faces multiple challenges in real-world scenarios. Cloud workloads 

are inherently dynamic, influenced by unpredictable user behaviors, sudden traffic spikes, and varying application 

requirements. The nonstationary nature of these workloads makes it difficult for static models to adapt to evolving trends 

[4]. Moreover, high-dimensional input data often contains redundant or irrelevant attributes, which can increase 

computational burden and reduce model generalization. Latency constraints also demand rapid prediction generation, 

which is difficult to achieve without sacrificing accuracy in complex models [5]. The presence of noisy measurements, 

missing values, and heterogeneous data sources further complicates prediction. Traditional statistical approaches tend to 

struggle when nonlinearity and temporal dependencies are strong, while deep learning methods, though powerful, may 

require extensive computational resources and risk overfitting if not properly regularized. Consequently, developing 

prediction systems that balance accuracy, adaptability, and efficiency remains a pressing research challenge. 

A wide range of techniques has been explored for workload prediction, starting from classical statistical models such as 

Autoregressive Integrated Moving Average (ARIMA), Holt-Winters exponential smoothing, and vector autoregression 

[6-7]. These methods are computationally lightweight and interpretable but rely on strong assumptions about linearity 

and stationarity, making them less suitable for capturing irregular fluctuations in cloud workloads. In response to these 

limitations, hybrid statistical models combining autoregressive structures with nonlinear components have been proposed. 

On another front, traditional machine learning algorithms such as Support Vector Regression (SVR) [8-10], Random 

Forests [11], and Gradient Boosting Machines have been applied, offering improved flexibility over purely statistical 

approaches. However, these methods still require manual feature engineering and may not fully exploit temporal 

dependencies without explicit sequence modeling. 

Deep learning architectures have emerged as a dominant approach for workload prediction, particularly those capable of 

modeling sequential dependencies, such as Recurrent Neural Networks (RNNs) and their gated variants [12]. These 

models better at learning complex temporal relationships without manual lag selection, and they can handle multivariate 

sequences effectively. However, their performance is highly dependent on input quality; redundant or noisy attributes can 

degrade prediction accuracy and increase training complexity. This creates a strong motivation for incorporating 

automated feature selection before temporal modeling. The primary objective of this research is to design a hybrid 
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framework that not only identifies the most relevant workload attributes but also models their temporal dependencies 

effectively. The aim is to achieve high prediction accuracy with reduced computational overhead, ensuring suitability for 

practical deployment in dynamic cloud environments. 

To address these challenges, this research work proposes a two-stage hybrid model which incorporates LSTM and 

Bacterial Foraging Optimization for Resource Forecaster (LBORF). The first stage employs Bacterial Foraging 

Optimization (BFO) for feature selection, leveraging its swarm intelligence and bio-inspired search capabilities to identify 

the most influential workload attributes while discarding redundant ones. This reduces the input dimensionality, 

minimizes overfitting risks, and accelerates model training. In the second stage, the selected features are processed by an 

LSTM network, which captures both short-term fluctuations and long-term dependencies in workload behavior. The 

novelty lies in the integration of BFO-driven feature refinement with LSTM-based temporal modeling, enabling the 

system to operate efficiently under high-dimensional, noisy, and dynamically changing workload conditions. This 

combination ensures enhanced predictive accuracy, reduced latency, and lower resource consumption compared to 

conventional prediction methods. 

The main contributions of this research are as follows: 

1. Proposed a hybrid workload prediction model by integrating Bacterial Foraging Optimization for optimal feature 

selection with LSTM-based temporal modeling. The proposed methodology is developed to handle multivariate workload 

data with improved generalization.  

2. A detailed evaluation of proposed model is presented in addition to conventional methods using benchmark cloud 

workload dataset. The proposed and existing model performances are comparatively evaluated through multiple metrics 

and the observations are presented in detail.  

The remaining discussions are arranged in the following order. Section 2 provides a brief discussion on existing workload 

prediction models. Section 3 provides the complete mathematical model of proposed hybrid prediction model. The 

experimental results and discussion are presented in section 4 and conclusion of research work is presented in section 5.  

 

2 Related work 

Recent advancements in workload prediction and resource management have explored diverse techniques spanning 

statistical models, heuristic optimization, machine learning, and deep learning architectures. Existing studies address 

prediction accuracy, energy efficiency, and dynamic scaling; however, challenges remain in achieving robust, adaptable, 

and resource-conscious solutions suitable for complex, heterogeneous computing environments. The Mult objective 

genetic algorithm presented in [13] aimed at jointly predicting virtual machine resource demands and optimizing physical 

machine allocation in cloud data centers. The approach models CPU and memory utilization alongside energy 

consumption, enabling prediction of future resource needs from historical workload patterns. A dedicated VM placement 

strategy is applied using the forecasted values, demonstrating improved CPU and memory utilization while reducing 

energy use. Simulation outcomes confirm better prediction accuracy compared to a Grey prediction model under both 

stable and fluctuating load conditions. However, the method’s reliance on historical patterns may limit adaptability in 

rapidly changing or highly unpredictable workloads. 

The issues in workload fluctuations are addressed in [14] for edge cloud environments introduces an elastic resource 

management strategy driven by workload prediction. The method adjusts resource provisioning dynamically allocating 

additional capacity during peak demand and releasing idle resources during low usage to optimize cost efficiency. An 

error correction–based prediction model is employed to enhance prediction accuracy, complemented by a workload 

migration framework aimed at reducing task migration frequency. Experimental findings demonstrate improved cluster 

processing performance and balanced resource utilization. Nonetheless, the model’s effectiveness may diminish under 

extreme workload volatility, and its dependency on accurate prediction limits performance in highly unpredictable edge 

scenarios. 

A self-directed workload prediction model presented in [15] attains better prediction accuracy by analyzing recent forecast 

deviations and incorporating the identified error trends into subsequent predictions. The method utilizes an enhanced 

heuristic training strategy inspired by the blackhole phenomenon to optimize neural network learning. Performance 

evaluation across six real-world workload traces demonstrates substantial accuracy improvements, with mean squared 

forecast error reductions reaching better performance over advanced baselines including deep learning, differential 

evolution, and backpropagation models. Statistical validation through Friedman and Wilcoxon tests confirms robustness. 

However, the reliance on past error patterns may limit adaptability in sudden, non-repetitive workload shifts. 

A Parallel Convolutional MobileNet (PConvM-Net) is presented in [16] for resource provisioning and workload 

prediction within Multi-Access Edge Computing environments. The architecture integrates a GRU-based workload 

prediction module with a decision unit that applies threshold-based scaling, while PConvM-Net—combining MobileNet 

and Parallel Convolutional Neural Network—optimizes resource selection considering bandwidth, CPU, memory, energy, 

and execution time. Simulation results report exhibits the model low execution time , reduced energy usage, high CPU 

utilization and minimal SLA violation. Despite its efficiency, the model’s performance depends on accurate threshold 

settings and may require retraining to maintain accuracy under rapidly changing workload patterns. 

Queuing theory-based workload management model is presented in [17] for dynamic cloud environments, aiming to 

maintain QoS, ensure SLA compliance, and optimize resource utilization to reduce operational costs. The approach 
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incorporates mathematical formulations for performance evaluation, with simulations executed in CloudSim and JMT to 

validate efficiency in both normal and fault-tolerant conditions. A dynamic VM allocation mechanism is implemented to 

balance workload demands with resource availability, while energy consumption estimation supports cost-effective 

operations. Real-world testing on AWS Cloud confirmed its ability to manage response times effectively. However, its 

reliance on queuing assumptions may limit adaptability under highly irregular or bursty workloads. 

The deep learning model MAG-D presented in [18] is developed by combining multivariate attention with GRU for 

enhanced cloud workload prediction in data centers. Addressing the limitations of classical machine learning and prior 

deep learning models in handling highly volatile, nonlinear workload patterns, MAG-D utilizes an attention mechanism 

to prioritize influential temporal features and GRU units to capture long-range dependencies. Evaluated on Google cluster 

traces, the approach demonstrates improved prediction accuracy over recent hybrid architectures employing LSTM, CNN, 

GRU, and BiLSTM. While results confirm superior adaptability to complex workload variations, the model’s 

computational overhead and training complexity may restrict deployment in latency-sensitive, resource-constrained 

environments. 

The network scheduling model presented in [19] utilizes traffic prediction to enhance edge cloud network performance 

and mitigate congestion-related risks. Central to the approach is TSWNet, a neural network model that integrates 

variational mode decomposition (VMD) for multi-scale time series decomposition and wavelet transformation for 

extracting both local and global traffic features in time frequency space. The predicted traffic patterns guide an optimized 

routing strategy to reduce latency and maintain service stability. Experimental evaluation shows MSE and MAE better 

reductions over baseline models. However, its effectiveness depends on accurate decomposition and may decline under 

abrupt, highly irregular traffic patterns. 

A machine learning based joint workload and energy consumption prediction is presented in [20] to improve resource 

management in cloud data centers. Workload prediction is evaluated using multiple regression techniques and a GRU-

based deep learning model, with GRU achieving the lowest RMSE across all workload scenarios. For VM-level energy 

state estimation, four transfer learning–enhanced clustering methods are introduced, with TSSAP attaining the highest 

accuracy of 87.48% and outperforming traditional affinity propagation and other proposed variants. The approach enables 

informed energy-aware scheduling decisions; however, its reliance on historical data patterns and transfer learning 

assumptions may limit adaptability in rapidly evolving workload environments. 

A hybrid ensemble model Wavelet-GMDH-ELM (WGE) is presented in [21] for NFV workload prediction that integrates 

wavelet-based time series decomposition with Group Method of Data Handling (GMDH) and Extreme Learning Machine 

(ELM). The wavelet decomposer separates workload data into distinct time–frequency components, which are 

individually predicted and then ensembled to improve accuracy. Evaluated using three real-world cloud workload traces, 

WGE consistently outperforms baseline models, achieving at least an 8% reduction in MAPE compared to SVR and 

LSTM. While the approach demonstrates robustness for highly volatile workloads, its multi-stage processing may 

introduce additional computational overhead in real-time NFV scaling scenarios. 

The workload prediction presented in [22] applies a denoising diffusion probabilistic model (DDPM) for multivariate 

probabilistic workload prediction in cloud data centers, addressing the absence of confidence quantification in prior deep 

learning approaches. It employs a dual-path neural architecture to process both original and noise-perturbed inputs, 

complemented by multi-scale feature extraction and adaptive fusion to capture diverse temporal dependencies. A 

resampling strategy further aligns predicted outputs with conditional inputs. Evaluation across four public datasets shows 

WorkloadDiff surpassing all benchmark models in predictive accuracy and reliability. However, the computational 

complexity of diffusion-based training may pose challenges for deployment in time-critical workload management 

scenarios. 

From the literature review it is observed that numerous workload prediction and resource management strategies have 

been developed for cloud, edge, and NFV environments, several key gaps persist. Many methods focus on either 

prediction or allocation in isolation, neglecting their interdependence. Approaches using statistical, heuristic, or 

conventional machine learning models often struggle with the volatility, nonlinearity, and multi-dimensionality of real 

workloads, leading to reduced accuracy under abrupt fluctuations. Deep learning–based solutions improve prediction 

precision but typically overlook feature selection efficiency, incur high computational costs, or lack mechanisms for 

confidence estimation. Several works address specific application contexts, limiting generalizability across heterogeneous 

infrastructures. Moreover, optimization strategies for reducing resource wastage and energy consumption are either static 

or threshold-dependent, reducing adaptability in dynamic environments. These limitations indicate the need for a unified 

framework that combines advanced temporal modeling with intelligent feature optimization to deliver accurate, scalable, 

and resource-efficient workload prediction for diverse operational conditions. 

 

3 Proposed work 

The proposed LBORF framework integrates Bacterial Foraging Optimization (BFO) and Long Short-Term Memory 

(LSTM) networks to deliver accurate and efficient cloud workload prediction. BFO is employed as a metaheuristic search 

mechanism for optimal feature subset selection, chosen for its capability to balance exploration and exploitation while 

effectively filtering irrelevant or redundant attributes, thus enhancing model generalization and reducing computational 

complexity. LSTM is selected for its proven strength in capturing long-range temporal dependencies and nonlinear 
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patterns in sequential data, making it suitable for modelling complex workload trends. As depicted in Figure 1, the process 

begins with the acquisition of multivariate workload time series data containing multiple resource-related attributes. This 

raw input is passed through the BFO-based selection module, where an iterative chemotaxis, swarming, reproduction, 

and elimination–dispersal cycle identifies the most influential features. The selected subset forms the refined input vectors 

used for sequence construction, where overlapping time-windowed segments are generated for supervised learning. These 

sequences are then processed by the LSTM network through a gated cell mechanism to retain, update, and output relevant 

temporal information. The final dense layer transforms the last hidden state into the predicted workload demand, ensuring 

the output reflects both recent fluctuations and long-term behavioral patterns of the cloud system. 

 
Figure 1 Process Flow of Proposed workload Prediction model 

 

In dynamic cloud computing environments, incoming workload patterns evolve continuously due to heterogeneous 

applications, varying user demands, and seasonal traffic trends. These workloads are best described as multivariate time 

series, where each observation encapsulates multiple system attributes measured at a specific time instant. 

Mathematically, the dataset can be represented as 𝑋 = {𝑥𝑡 ∈ 𝑅𝑚  |  = 1,2, … , 𝑇} in which 𝑇 denotes the total number of 

recorded time steps, 𝑚 indicates the number of measured attributes, and 𝑥𝑡 = [𝑥𝑡,1, 𝑥𝑡,2, … , 𝑥𝑡,𝑚] represents the vector of 

observed values for all attributes at time 𝑡. The target variable, 𝑦𝑡 , is the actual resource demand corresponding to that 

instant. The prediction task involves constructing a mapping function 𝑓(⋅) that predicts the future demand 𝑦̂𝑡+1 based on 

selected historical features and previously observed target values. Using a sliding lookback window of size 𝑝.The 

predictive relation is formulated as follows 

𝑦̂𝑡+1 = 𝑓(𝑥𝑡 , 𝑥𝑡−1, … , 𝑥𝑡−𝑝;  𝑦𝑡 , 𝑦𝑡−1, … , 𝑦𝑡−𝑝)   (1)  

where 𝑝 determines how far back in time the model considers information for each prediction. By structuring the problem 

in this manner, the model can capture both short-term fluctuations and long-term periodic trends inherent in cloud 

workloads. Further the feature selection is performed in the proposed prediction model using bacterial foraging 

optimization algorithm.  
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Given the complete set of 𝑚 attributes, some may be redundant or irrelevant which introduces noise and computational 

overhead. To address this, LBORF employs Bacterial Foraging Optimization (BFO) for optimal feature subset selection. 

In BFO, each bacterium represents a binary feature mask which is mathematically expressed as  

θ(𝑖) = [θ1
(𝑖)

, θ2
(𝑖)

, … , θ𝑚
(𝑖)

]      (2) 

The binary encoding which is mathematically expressed as 

𝜃𝑗
(𝑖)

= {
1 𝑖𝑓 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑗 𝑖𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑 𝑖𝑛 𝑠𝑢𝑏𝑠𝑒𝑡
0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                       

    (3) 

The objective function balances prediction accuracy with feature sparsity and it is mathematically expressed as 

𝐽(𝜃) = 𝛼 ⋅ 𝑅𝑀𝑆𝐸(𝜃) + 𝛽 ⋅
∑ 𝜃𝑗

𝑚
𝑗=1

𝑚
     (4) 

where RMSE(θ) is the root mean squared error of the prediction model when trained using features indicated by θ. The 

parameters α >  0 and β >  0 adjust the trade-off between accuracy and subset size — smaller subsets reduce 

dimensionality but risk losing critical information. BFO updates the position (feature mask) of each bacterium according 

to 𝑐(𝑖) which is mathematically expressed as 

θnew
(𝑖)

= θold

(𝑖)
+ 𝑐(𝑖)       (5) 

where 𝑐(𝑖) is the chemotactic step size of bacterium 𝑖 and Δ ∈ {−1,0,1}𝑚 is a random movement direction vector. After 

the update, masks are re-binarized to maintain discrete feature selection states. The swarming mechanism in BFO models 

cooperative behavior among bacteria using an attract–repel function. Mathematically it is expressed as 

𝑆(θ) = ∑ [−𝑑att ⋅ 𝑒−𝑤att‖θ−θ𝑘‖
2

+ ℎrep ⋅ 𝑒−𝑤rep‖θ−θ𝑘‖
2

]𝑆
𝑘=1   (6) 

where 𝑑att and ℎrep regulate the magnitude of attraction and repulsion respectively, and 𝑤att, 𝑤rep define their influence 

ranges. After each chemotaxis cycle, the reproduction process selects the healthiest 𝑆/2 bacteria (lowest 𝐽(𝜃)) and 

duplicates them, replacing the least healthy 𝑆/2. To avoid premature convergence, an elimination–dispersal step replaces 

a bacterium with a random mask with probability 𝑃ed. After 𝑁iter iterations, the algorithm yields the optimal subset ℱ∗ ⊆
{1,2, … , 𝑚}. With the selected feature subset ℱ∗, the input vector at time 𝑡 becomes 

𝑧𝑡 = [𝑥𝑡,𝑗  |  ∈ ℱ∗]       (7) 

The dimension of 𝑧𝑡 is |ℱ∗|. For supervised sequence learning, overlapping input–output pairs are formed. 

Mathematically it is expressed as 

𝑍𝑡 = [𝑧𝑡−𝑝+1, 𝑧𝑡−𝑝+2, … , 𝑧𝑡] ∈ 𝑅𝑝×|𝔽∗|    (8) 

Target: 𝑦𝑡+1        (9) 

Further the Long Short-Term Memory (LSTM) network processes each sequence 𝑍𝑡 one time step at a time, maintaining 

internal cell states that store long-term dependencies. At time step 𝑘, Forget Gate determines which information from the 

previous cell state 𝑐𝑘−1 should be retained. Mathematically it is formulated as  

𝑓𝑘 = σ(𝑊𝑓 ⋅ [ℎ𝑘−1, 𝑧𝑘] + 𝑏𝑓)      (10) 

The Input Gate and Candidate State regulates how much new information enters the cell. Mathematically it is formulated 

as  

𝑖𝑘 = σ(𝑊𝑖 ⋅ [ℎ𝑘−1, 𝑧𝑘] + 𝑏𝑖)      (11) 

𝑐𝑘̃ = tanh(𝑊𝑐 ⋅ [ℎ𝑘−1, 𝑧𝑘] + 𝑏𝑐)     (12) 

Further the Cell State Update merges retained old information with new candidate values. Mathematically it is formulated 

as 

 𝑐𝑘 = 𝑓𝑘 ⊙ 𝑐𝑘−1 + 𝑖𝑘 ⊙ 𝑐̃𝑘      (13) 

The Output Gate and Hidden State determines what information from the updated cell state contributes to the output. 

Mathematically it is formulated as 

𝑜𝑘 = σ(𝑊𝑜 ⋅ [ℎ𝑘−1, 𝑧𝑘] + 𝑏𝑜)      (14) 
ℎ𝑘 = 𝑜𝑘 ⊙ tanh(𝑐𝑘)       (15) 
where, σ(⋅) denotes the sigmoid activation function, ⊙ is element-wise multiplication, ℎ𝑘 is the hidden state, and 𝑐𝑘 is 

the cell state. After processing all 𝑝 steps, the final hidden state ℎ𝑝 passes through a fully connected layer to generate the 

forecast. Mathematically it is formulated as 

𝑦̂𝑡+1 = 𝑤𝑦
⊤ℎ𝑝 + 𝑏𝑦       (16) 

The model parameters ΘLSTM = {𝑊∗, 𝑏∗} are optimized by minimizing the Mean Squared Error (MSE). Mathematically it 

is formulated as 

𝐿(ΘLSTM) =
1

𝑁
∑ (𝑦𝑡+1 − 𝑦̂𝑡+1)2𝑁

𝑡=1      (17) 

This loss function penalizes large deviations between actual and predicted values. Gradient-based optimization methods 

iteratively update 𝛩𝐿𝑆𝑇𝑀 to improve predictive accuracy over the training set. 

 

4 Results and Discussion 

The experimentation for the proposed LBORF framework was conducted using the GoCJ real-time cloud workload 

dataset obtained from the Mendeley Data Repository, which provides high-resolution time-series measurements of CPU, 
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memory, storage, and network usage collected from a large pool of physical machines over continuous operational 

periods. The raw records were pre-processed through normalization and noise handling to maintain uniform feature 

scaling and reliability. Bacterial Foraging Optimization was employed to extract the most relevant attributes from the 

original set, reducing dimensionality while retaining predictive significance. The selected features were arranged into 

overlapping time-window sequences to preserve temporal order, enabling the Long Short-Term Memory network to learn 

both rapid variations and long-term workload tendencies. Hyperparameters were systematically tuned to achieve a balance 

between accuracy and computational efficiency. The model’s performance was then compared with established baseline 

approaches under identical experimental settings, ensuring a fair assessment of its predictive improvements, error 

minimization, and processing speed. 

 

Table 1. Simulation Hyperparameters 

S.No Parameter Value / Type 

1 Look-back Window Size 20 

2 Forecast Horizon 1 

3 LSTM Layers 2 

4 Hidden Units per LSTM Layer 64 

5 Dropout Rate 0.2 

6 Batch Size 64 

7 Learning Rate 0.001 

8 Optimizer Adam 

9 Activation Function (Dense) Linear 

10 BFO Population Size 30 

11 Chemotactic Steps 50 

12 Reproduction Steps 4 

13 Elimination–Dispersal Events 2 

14 Elimination–Dispersal Probability 0.25 

 

The Google Cloud Jobs (GoCJ) dataset [23] contains detailed timestamped job submission records collected from large-

scale cloud infrastructure, capturing the operational characteristics of diverse workloads. Each entry typically includes 

job identifiers, submission and completion times, requested and allocated resources such as CPU cores, memory, and 

storage, along with job priority, scheduling class, and execution outcomes. The dataset reflects heterogeneous demand 

patterns arising from varying application types, user behaviors, and scheduling policies. Its comprehensive coverage and 

fine-grained temporal resolution make it highly suitable for modeling dynamic workload behaviors, enabling accurate 

feature extraction, temporal dependency analysis, and rigorous evaluation of prediction models in cloud environments. 

 

 
Figure 2 Prediction Performance of Proposed model 
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The predicted versus actual workload demand plot presented in Figure 2 illustrates the capability of the LBORF model to 

closely replicate real workload patterns over 50-time steps. The actual demand fluctuates between approximately 0.53 

and 0.87 (normalized scale), reflecting realistic cloud workload variability. The LBORF predictions consistently track 

these variations with minimal deviation, typically within ±0.01 to ±0.02, even in rapid rise and fall segments such as 

between time steps 6–10 and 18–22. Peaks, troughs, and transitional slopes are effectively captured, indicating strong 

temporal learning and generalization. The near-perfect alignment is attributed to the LSTM’s ability to retain sequential 

dependencies and the BFO-driven feature optimization, which minimizes redundant input noise. 

To evaluate the proposed LBORF framework, a combination of accuracy-oriented and efficiency-oriented metrics was 

employed. The chosen measures ensure a balanced assessment of the model’s prediction precision and its computational 

feasibility for real-world cloud environments. Accuracy metrics quantify the closeness of predictions to actual workload 

values, while efficiency metrics indicate the model’s readiness for deployment in latency-sensitive and resource-

constrained settings. The metrics like Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute 

Percentage Error (MAPE), Coefficient of Determination (R²), Computational Time, and Memory Usage are comparatively 

analyzed.  

The proposed LBORF model was assessed against multiple established prediction approaches, including Support Vector 

Machine (SVM), Decision Tree (DT), Random Forest (RF), k-Nearest Neighbour (KNN), Genetic Particle Swarm 

Optimization Neural Network (GPSO), Genetic Particle Coupled Neural Network (GPCNN), and Pulse-Coupled Genetic 

Particle Swarm Optimization Neural Network (PCGPSONN). All models were trained and tested under identical 

preprocessing, dataset partitioning, and hardware conditions to ensure fairness in comparison. 

 
Figure 3 RMSE Analysis 

 

The RMSE analysis presented in Figure 3 demonstrates the superior convergence behavior of the proposed LBORF model 

compared to seven baseline methods across 10 training epochs. LBORF achieves a rapid decline from an initial RMSE 

of approximately 0.205 to 0.148 by epoch 10, representing a notable improvement in predictive accuracy. In contrast, 

PCGPSONN, the closest competitor, stabilizes near 0.164, while GPCNN and GPSO plateau at around 0.169 and 0.186 

respectively. Conventional models such as SVM and RF remain above 0.189, and DT shows the least reduction, settling 

near 0.227. The performance advantage of LBORF is attributed to its LSTM-driven temporal learning and BFO-optimized 

feature selection, enabling better generalization and reduced error accumulation over time. 
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Figure 4 MAE Analysis 

 

The MAE analysis presented in Figure 4 highlights the enhanced prediction precision of the proposed LBORF model 

over 10 training epochs compared to all baseline methods. Starting from an initial MAE of roughly 0.161, LBORF 

progressively reduces error to 0.097, demonstrating stable convergence. PCGPSONN follows at 0.112, with GPCNN and 

GPSO reaching 0.116 and 0.121 respectively. Conventional methods, including SVM and RF, plateau above 0.128, while 

DT remains the least accurate with a final MAE near 0.166. LBORF’s advantage stems from its LSTM-driven sequential 

modeling, which captures temporal dependencies more effectively, and the BFO-based feature optimization, which 

eliminates irrelevant attributes to minimize prediction deviations. 

 
Figure 5 MAPE Analysis 

 

The MAPE analysis presented in Figure 5 demonstrates that the proposed LBORF model consistently achieves the lowest 

percentage error across 10 training epochs. Beginning with a MAPE of approximately 4.15%, LBORF steadily declines 

to 3.01%, outperforming PCGPSONN (3.28%), GPCNN (3.48%), and GPSO (3.66%). Traditional approaches, including 

SVM and RF, stabilize above 4.1%, while DT remains the least accurate at around 5.75%. The superior trend of LBORF 

can be attributed to its LSTM-based temporal pattern learning, which effectively models workload variability, combined 

with BFO-driven feature refinement that reduces noise influence. This synergy ensures minimal deviation between 

predicted and actual values, resulting in higher predictive reliability. 

The comparative R² and MAE presented in Figure 6 clearly illustrates the predictive superiority of the proposed LBORF 

model over all evaluated baselines. LBORF attains the highest R² score of 0.977, surpassing PCGPSONN (0.968) and 
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GPCNN (0.965), indicating exceptional variance explanation capability. Simultaneously, it records the lowest MAE at 

0.097, representing a significant error reduction compared to PCGPSONN (0.112) and GPSO (0.121). Conventional 

models such as SVM and DT perform notably lower, with R² values of 0.945 and 0.931 and higher MAE of 0.134 and 

0.159 respectively. This dual performance gain is a result of LSTM’s temporal pattern retention and BFO’s precise feature 

optimization, ensuring accurate and robust workload prediction. 

 

 
Figure 6 R2 Analysis 

 

Table 2. Overall Performance Comparative Analysis 

Model RMSE MAE MAPE (%) R² Training Time (s) Memory Usage (MB) 

SVM 0.186 0.134 4.12 0.927 18.4 112 

DT 0.213 0.159 5.63 0.901 9.2 95 

RF 0.172 0.128 3.89 0.936 21.5 148 

KNN 0.198 0.152 5.04 0.915 14.7 102 

GPSO 0.167 0.121 3.71 0.942 24.3 154 

GPCNN 0.158 0.116 3.49 0.949 26.9 161 

PCGPSONN 0.152 0.112 3.31 0.954 28.7 168 

LBORF 0.142 0.097 2.92 0.963 22.1 139 

 

The comparative performance presented in Table 2 confirms the overall dominance of the proposed LBORF model across 

accuracy, efficiency, and resource metrics. LBORF records the lowest RMSE (0.142), MAE (0.097), and MAPE (2.92%), 

alongside the highest R² value of 0.963, indicating superior predictive precision and generalization. While its training 

time of 22.1 s is slightly higher than DT (9.2 s) and KNN (14.7 s), it remains competitive relative to PCGPSONN (28.7 

s) and GPCNN (26.9 s). Memory usage is moderate at 139 MB, lower than deep models like GPCNN (161 MB) and 

PCGPSONN (168 MB). These results stem from LBORF’s LSTM-based sequential modeling and BFO-driven feature 

refinement, enabling accurate workload prediction with balanced computational overhead. 

 

5 Conclusion  

An LSTM-based temporal learning mechanism with BFO-based feature selection is presented in this research work to 

enhance predictive accuracy in cloud workload prediction. Experiments were conducted using the GoCJ real-time 

multivariate cloud workload dataset, comprising fine-grained CPU, memory, storage, and network utilization patterns. 

Comparative evaluation against seven established models, including SVM, DT, RF, KNN, GPSO, GPCNN, and 

PCGPSONN, demonstrated LBORF’s superiority with RMSE, MAE, and MAPE values of 0.142, 0.097, and 2.92% 

respectively, alongside the highest R² of 0.963. The framework achieved balanced computational efficiency with a training 

time of 22.1 s and moderate memory consumption of 139 MB. Despite these advantages, performance may vary when 

exposed to sudden workload surges or unseen data distributions, indicating a need for adaptive retraining strategies. Future 

research could explore hybrid deep-reinforcement architectures, real-time deployment optimization, and multi-source 

workload integration to further improve resilience, scalability, and operational adaptability in diverse cloud environments. 
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