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Abstract 

Arithmetic modulo operators, especially those involving 2n + 1, have wide-ranging applications in fields like 

pseudorandom number generation, cryptography, and digital signal processing (DSP). These modulo operations are 

particularly useful in the Residue Number System (RNS). This work presents the design of a modulo 2n ± 1 adder-

subtractor using a parallel prefix adder. The design leverages two numerical representations: weighted-one and 

diminished-one. After developing the adder-subtractor, it is implemented on an FPGA to evaluate its performance. A 

detailed comparison has been conducted between the two representations, focusing on area utilization and execution 

time. 
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 INTRODUCTION 

Various domains such as pseudorandom number generation, cryptography, and convolution computations employ 

arithmetic modulo operators. Modulo 2n+1  operators are frequently used in Residue Number System (RNS) 

applications. RNS is an arithmetic system that decomposes numbers into parts and performs arithmetic operations in 

parallel, eliminating the need for carry computations for each residue. RNS is utilized for operations like addition, 

subtraction, and multiplication, and plays a key role in the design of digital signal processors.  

The moduli set {2n-1, 2n, 2n+1} is particularly effective in high-performance RNS applications because it allows for fast 

residue arithmetic. Special moduli sets have been adopted to reduce hardware complexity in converters and arithmetic 

operations, with the triple moduli set {2n-1, 2n, 2n+1} offering notable benefits. Due to the operand lengths of these 

moduli, the operation delay is primarily determined by the modulo 2n-1 channel. Reducing the time required for modulo 

2n-1 addition directly speeds up the overall RNS addition process. To accelerate modulo 2n±1 arithmetic operations, the 

diminished-1 representation of binary numbers has been introduced. 

Modulo 2n±1 operators have long been of interest because they simplify certain RNS arithmetic operations.  

The complexity of a modulo 2n+1 arithmetic unit is influenced by the representation of the input operands. Three main 

representations have been considered: the normal weighted representation, the diminished-1 representation, and the 

signed-LSB representation. In this context, we focus on the first two, as the signed-LSB representation is less efficient in 

terms of delay and area. For modulo 2n+1 arithmetic, the operands and results must be between 0 and 2n. In the normal 

weighted representation, each operand requires n + 1 bits. The diminished-1 representation, however, offers a more 

compact encoding of the input operands and simplifies modulo 2n+1 arithmetic operation. In diminished-1, a number A 

is represented as azA*, where az is a single bit called the zero indication bit, and A* is an n-bit vector. If A > 0, then az = 

0 and A* = A - 1; if A = 0, then az = 1 and A* = 0. In the design of efficient diminished adders, the most commonly used 

adder is the inverted end-around-carry n-bit adder. This adder accepts two n-bit operands and produces a sum that is 

incremented by one compared to their integer sum, provided that the integer addition does not generate a carry output. 

An inverted end-around-carry adder can be implemented using an integer adder, with its carry output connected back to 

its carry input via an inverter. However, since the carry output depends on the carry input, directly connecting them may 

lead to unwanted race conditions. 

This work presents the design of a modulo (2n ± 1) adder-subtractor using a parallel prefix adder. The design leverages 

two numerical representations: weighted-one and diminished-one. After developing the adder-subtractor, it is 

implemented on an FPGA to evaluate its performance. A detailed comparison has been conducted between the two 

representations, focusing on area utilization and execution time. 

 

MODULAR ARITHMATIC 

Modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" upon reaching a certain value 

the modulus. Modular arithmetic defined mathematically by introducing a congruence relation on the integers that is 

compatible with the operations of the ring of integers: addition, subtraction, and multiplication. For a positive integer n, 

two integers a and b are said to be congruent modulo n 
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Their difference a − b is an integer multiple of n (or n divides a − b). The number n is called the modulus of the 

congruence. 

Modular arithmetic is referenced in number theory, group theory, ring theory, knot theory, abstract algebra, computer 

algebra, cryptography, computer science, chemistry and the visual and musical arts. 

Modular arithmetic is used to calculate checksums that are used within identifiers  International Bank Account Numbers 

(IBANs) for example make use of modulo 97 arithmetic to trap user input errors in bank account numbers. 

In cryptography, modular arithmetic directly underpins public key systems such as RSA and Diffie-Hellman, as well as 

providing finite fields which underlie elliptic curves. 

In computer algebra, modular arithmetics is commonly used to limit the size of integer coefficients in intermediate 

calculations and data. It is used in polynomial factorization, a problem for which all known efficient algorithms use 

modular arithmetic.  

In computer science, modular arithmetic is often applied in bitwise operations and other operations involving fixed-

width, cyclic data structures.  

The modulo operation, as implemented in many programming languages and calculators XOR is the sum of 2 bits, 

modulo 2. 

The method of casting out nines offers a quick check of decimal arithmetic computations performed by hand. It is based 

on modular arithmetic modulo 9, and specifically on the crucial property that 10 ≡ 1 (mod 9). 

Arithmetic modulo 7 is used in algorithms that determine the day of the week for a given date. In particular, Zeller's 

congruence and the doomsday algorithm make heavy use of modulo-7 arithmetic2. 

 

Modulo adder 

Arithmetic modulo (2n  - 1) (Mersenne numbers) and modulo (2n  + 1) (Fermat numbers) is used in residue number 

systems and cryptography. Efficient and fast modulo adders and Subtractor are a need for corresponding high 

performance integrated circuits. 

Binary numbers with n bits are denoted as A = an-1an-2……. a0 then 

      n-1 

A =∑   (2i ai) 

         i =0 

Reduction of a number A modulo a number M (“A mod M”) can be represented by a division (with the remainder as 

result) or by subtracting the modulus until A <M. For the moduli (2n  - 1) and (2n  + 1), the modulo reduction of a 

number A with at most 2n bits can be computed by an addition or subtraction3. 

2n  mod (2n  - 1) = 2n  - (2n  - 1) =1  

the reduction modulo (2n  - 1) can be represented as 

A mod (2n  - 1) = (A mod 2n  + A div 2n) mod (2n  - 1) 

where the modulo operation on the right hand side is used for final correction if the addition yields a result > 2n - 1 (2n-1 

has to be subtracted once). Then the modulo (2n-1) reduction is computed by adding the high n bit word (A div 2n) to the 

low n - bit word (A mod 2n) and then subtracting 2n  - 1. 

Similarly, 

2n  mod (2n  + 1) = 2n  - (2n  + 1) = -1  

the reduction modulo (2n + 1) can be represented as 

A mod (2n + 1) = (A mod 2n - A div 2n) mod (2n + 1) 

where the modulo operation on the right hand side is used for final correction if the subtraction yields a negative result 

(2n + 1 has to be added once). Then the modulo (2n+1) reduction is computed by subtracting the high n bit word from 

the low n bit word and then adding 2n + 1 Also the modulo operator has the property that a sum modulo M is equivalent 

to the sum of its operands modulo M: 

(A + B) mod M = (A mod M + B mod M) mod M  

Modulo (2n ± 1) Adder 

Modulo-m addition of mod-m residues A and B (0 ≤ A, B < m) is defined as: 

S=  |A+B|m   = {     A + B –m      if   A + B >  m  } 

A + B   otherwise 

Replacing m in this equation with 2n – 1 or 2n + 1 shows the corresponding equations for mod-(2n–1) or mod-(2n+1) 

addition, respectively. Because comparing A + B with 2n-1 or 2n + 1 is nontrivial, so this equation is modified into new 

equations which use much simple comparisons with 2n. Here, W = (wn wn–1 . . . w1 w0) = A + B is the true sum of A and 

B, which can be decomposed into a single bit wn and an n-bit number |W|2n . Similarly, W ′ = (w′nw′n–1 . . . w′1w′0) = A 

+ B – 1 is the diminished sum of A and B, with its associated decomposition into a single bit w′n and an n-bit number 

|W ′|2n.4 

S-  =   |A+B|2n
 -1   = {W-  2n +1         if  W >  2n  } 

W                otherwise 

S+ =  |A+B|2n +1   = {W’-  2n         if  W’ >  2n  } 
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W’ + 1            otherwise 

Modulo (2n -1) addition 

Modulo (2n -1) addition can be formulated as                                                

 

(A+B)  mod (2n -1)     = {     A + B –(2n -1) = (A + B + 1) mod 2n      if   A + B > 2n -1   } 

A + B                                    otherwise 

This equation can also be written as:                                                

 

(A+B)  mod (2n -1)     = {       A + B –(2n -1)  = (A + B + 1) mod 2n      if   A + B >  2n    } 

A + B                                    otherwise 

 

Modulo 2n+1 Subtractor 

Subtraction is an operation which is widely used in digital signal processing applications for calculating mean error 

estimation, mean square error estimation and calculation of sum of absolute differences. Modulo arithmetic is also used 

in these types of applications like efficient modulo subtraction circuits are mostly used. 

Weighted – one representation 

This representation is also called integer representation1. In this each operand requires n+ 1 bits for its representation but 

only utilizes 2n + 1 representations out of the 2n+1. 

 

Diminished-1 representation 

In diminished-1 representation each operand is represented decreased by one  compared to its weighted 

representation1.Zero operands are not used in the computation. The results are derived alternatively when any operand 

or the result is zero. Therefore only n-bit operands are used in a diminished-1 channel leading to smaller and faster 

components. In the diminished-1 representation A is represented as azA*, where az is a single bit, often called the zero 

indication bit, and A* is an n-bit vector, often called the number part. If A > 0, then az = 0 and A* = A – 1. whereas for 

A =0; az = 1, and A* = 0. For example, the diminished-1 representation of A = 5 modulo 1710 is 001002. 

 

RESULTS 

Timing and area analysis is shown in table below for all adder-subtractor which have analyzed. Different values of n is 

used to calculate delay like n=5,8,15.     

 

S.No Device name No. of 

input 

No.of 

SLICE 

LUT Gate 

density 

Delays 

 

Total Logic nets 

1 Weighted one plus one 

adder 

5 12 21 153 8.774ns  4.607ns 4.167ns 

8 19 35 261 10.922ns 5.011ns 5.910ns 

15 39 66 489 15.984ns 6.028ns 9.956ns 

2 Weighted one minus 

one adder 

5 9 17 126 6.494ns  4.199ns 2.295ns 

8 18 35 261 9.805ns 4.808ns 4.997ns 

15 39 66 489 15.326ns 5.823ns 9.503ns 

3 Weighted one plus one 

sub 

5 14 23 177 7.935ns 4.404ns 3.531ns 

8 24 40 333 10.821ns 5.013ns 5.808ns 

15 46 78 645 16.446ns 6.382ns 10.064ns 

4 Weighted one minus 

one sub 

5 10 20 156 7.762ns 4.204ns 3.558ns 

8 22 39 324 10.007ns 4.810ns 5.197ns 

15 46 78 642 16.446ns 6.382ns 10.064ns 

5 Diminished one plus 

one adder 

5 16 28 225 6.755ns 4.199ns 2.556ns 

8 28 50 435 10.800ns 5.019ns 5.781ns 

15 55 94 831 15.707ns 6.198ns 9.509ns 

6 Diminished one minus 

one adder 

5 13 24 198 7.864ns 4.402ns 3.462ns 

8 28 50 435 10.019ns 4.808ns 5.211ns 

15 55 94 831 15.707ns 6.198ns 9.509ns 

7 Diminished one plus 

one sub 

5 18 32 261 6.911ns 4.199ns  2.712ns 

8 32 56 519 10.778ns 5.015ns 5.763ns 

15 63 108 999 16.405ns 6.437ns 10.068ns 

9 Diminished one minus 

one sub 

5 17 29 247 7.798ns 4.402ns 3.396ns 

8 31 54 491 10.123ns 4.810ns 5.313ns 

15 62 106 967 16.805ns 6.737ns 10.068ns 
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From the above table we can analyze that weighed-one approach is more area efficient for all adder subtractor in 

comparison to diminished-one approach. In terms of delay, weighed-one approach has less delay for 2n – 1 adder-

subtractor and diminished-one has less delay for 2n + 1 adder-subtractor. 

 

CONCLUSION AND FUTURE WORK 

Efficient modulo 2n+1 and 2n-1 adders and subtractors are valuable in various computer applications, including all 

implementations of Residue Number Systems (RNS). This work presents two significant contributions to the problem of 

modulo 2n+1 and 2n-1 addition and subtraction: weighted and diminished approaches.   

A novel architecture has been developed using a sparse, fully regular parallel-prefix carry computation unit. This 

architecture leverages the inverted circular idempotency property of the parallel-prefix carry operator in modulo 2n+1 

and 2n-1 arithmetic. Additionally, it introduces a new prefix operator, eliminating the need for the double computation 

tree required in previous high-speed designs.   

The same parallel-prefix methodology was extended to support modulo 2n+1 and 2n-1 subtraction, incorporating the 2’s 

complement technique. Detailed experimental evaluations demonstrate that the proposed architecture significantly 

outperforms earlier designs in terms of implementation efficiency, area usage, and timing, while maintaining a high 

execution rate.   

In this design, the subtractor result has been optimized with respect to adder although it can be even more optimized by 

merging of parallel prefix subtractor or different approach for 2’s complement. 
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