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ABSTRACT 

Developing long-term therapies for diseases of the brain and nervous system (central nervous system), such as 

neurological and psychiatric disorders, is challenging due to high medication rates for failure and high expenses. 

Computer-Aided medication Design (CADD) provides a crucial strategy to address these issues, enabling more targeted 

and cost-effective drug development. The two CADD approaches of Ligand-Based Drug Design (the LBDD method) and 

Structure-Based Drugs Design (the SBDD method) focus on identifying key ligand physical and chemical and structural 

properties without requiring knowledge of the target structure. Drug design has been significantly improved in recent 

years by the combination of CADD with bioinformatics, including proteomics, metabolomics, and genomics. Potential 

treatment candidates for conditions like Alzheimer's, Parkinson's, neuropathic pain, and Virtual high-throughput drug 

screening as well as deep machine learning techniques such as convolutional networks of neurons (CNNs), networks of 

recurrent neurons (RNNs), as well as long short-term memories (LSTM) networks have played a significant role in the 

discovery of schizophrenia. More than 90% of compounds with desired CNS pharmacological properties are produced 

using the CNSMolGen model, a unique molecular generation system that makes use of bidirectional recurrent neural 

networks (BiRNNs). This integrated strategy has the potential to improve treatment results, speed up CNS drug discovery, 

and cut down on the time and expense of medication development. 

 

Keywords- Ligand-Based Drug Design (LBDD), Structure-Based Drug Design (the SBDD method), and Computer-

Aided Drug Design (CADD), Deep Learning (CNNs, RNNs, LSTM), CNSMolGen model 

 

INTRODUCTION 

The medical field of mental illnesses, which includes neurological and psychiatric problems, has a significant unmet 

demand for novel and more sophisticated therapies. The only treatments available for conditions like cognitive impairment 

and Parkinson's disease are those that reduce symptoms [1,2]. The effectiveness of existing treatments wanes when these 

illnesses worsen, and they can no longer control them. There are several ways to treat mental diseases like schizophrenia, 

However, due to cardiometabolic disorder, they are associated with several adverse drug reactions that can significantly 

impair the physical condition of a patient [3]. There is no known treatment or cure for other neurological conditions such 

brain injuries. Therefore, it is imperative and important to develop medications that prevent or stop neuronal death and 

the ensuing impairments. Since 85% of drugs fail phase 2 and 3 tests in clinical trials, creating new drugs is a challenging 

task that target mental diseases one of the most unsuccessful drug discovery processes [4]. Due to their propensity to fail 

in later stage trials [5], it is exceedingly expensive to create drugs for the Nervous System (Central nervous system); it is 

projected that bringing a treatment to market in 2019 would cost up to $2 billion [6]. To ensure that new discovery 

initiatives get off to the greatest possible start, Methodologies for computer-aided drug design (CADD, which stands) are 

essential. In contrast to conventional laboratory testing and design of drugs, these procedures are less time-consuming and 

labour-intensive, making them a mainstay in the early stages of drug development and a popular place to start new studies. 

Therefore, CADD can reduce the high related expenses and decrease the period from fundamental study before launching 

a medication. Structure-based and ligand-based techniques are the two primary types of CADD (Figure 1). Complexing 

agent-based techniques operate based on the idea that a medication's biological action is correlated with its chemical 

structure. To forecast new and improved compounds, structural activity relationships (SARs) can be calculated using a set 

of known active and inactive ligands. The primary obstacle in the creation of ligand-based drugs is describing chemical 

structure. This may be accomplished using 2D or 3D descriptions, depending on the amount of complexity. The 3-D 

structure form of the biological target must be understood to use structure-based pharmaceutical design strategies. 

Understanding the design of the binding sites can help one assess if a ligand would make a suitable lead molecule by 
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looking at how the binding sites interact. To choose compounds that would be most appropriate for additional study, For 

tiny compounds, both structure-based and ligand-based methods depend on goodness of fit. Molecules are rated based on 

characteristics like binding energy, similarity, or correlations to molecular properties, which makes them perfect for the 

first phases of the drug development process. Although each of these techniques will be discussed independently, it is 

important to keep in mind that they are often used in combination to reduce the computing burden and generate more 

accurate results when screening large chemical libraries. A complementary process leading to new chemical entities is the 

end consequence. 

 

 
Figure. 1: - A drug design process that incorporates the CADD phases. Applications based on ligands and structures are 

described. Highlighted are a few examples of software programs and chemical libraries utilized at various phases of the 

operation. It should be mentioned that these lists are not all-inclusive and that more software programs and libraries are 

accessible [7]. 

 

Molecular modeling and other contemporary medicinal chemistry techniques have become more popular in Structure-

activity correlations (SAR) may be effectively studied using based on research pharmaceutical companies [8]. These 

approaches have also been used to study pharmacokinetic features with pharmacodynamic information (e.g., strength, 

affinities efficacy, and selective) (ADMET, which is: intake, dispersion, metabolism, excretion, and toxicity) [9]. 

Alongside the field's advancements have been NMR (nuclear magnetic resonance) and X-ray crystallography are examples 

of biomolecular spectroscopic methods that have enabled incredible advancements in molecular and structure-based 

biology. With the use of these methods, more than 100,000 protein structures in three dimensions have been determined, 

yielding crucial structural data on important macromolecular therapeutic targets [10]. Initiatives to store, organize, along 

with study such data have led to an increased need for powerful and sophisticated computational tools. Consequently, the 

accurate combination of in silico & experimental approaches has enabled our present understanding of the intricate 

features of intermolecular recognition [11]. One important component of modern medicinal chemistry is structure-based 

drug development (SBDD) methods, which make use of three-dimensional structural information gleaned from biological 

targets [12]. Because of their numerous applications in the study of the recognition of molecules events, such as binding 

energetics, interaction between molecules, and induced conformational changes, docking of molecules, structure-based 

virtual screening (the SBVS), and molecular dynamics (MD) are the most widely used SBDD approaches [13]. Using 

libraries of bioactive small molecules is a novel approach to medication development. The unique chemical diversity 

observed in these libraries represents the space occupied by ligands known for their interaction with a certain target. This 

type of data is used in ligand-based drug development (LBDD) methods [10]. Among the most successful LBDD methods 

are ligand-based virtual screening (LBVS), pharmacophore development, QSAR modeling, and similarity finding [14]. 

Both academia and industry have found SBDD and LBDD approaches to be effective drug discovery methods due to their 
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versatility and synergistic nature [15]. Several structural, chemical, and biological data have effectively used the 

integration of various methodologies [16, 17]. 

 

DRUG DESIGN BASED ON STRUCTURE (SBDD): 

SBDD is a cyclical process that includes the slow collection of data. Potential ligands are found through in silico 

investigations, which start with a target structure that is known. The most promising compounds are created after these 

molecular modeling procedures [18]. Biological parameters, including potency, affinity, and effectiveness, are then evaluated 

utilizing a variety of experimental platforms [19]. If active molecules are identified, the three-dimensional structure of the 

ligand-receptor complex may be solved. Several intermolecular features that facilitate molecular identification may be seen 

thanks to the accessible structure. The structural descriptions of complexes between ligand and receptor can be useful for 

mechanistic research, studies of binding conformations, characterization of significant interactions between molecules, 

characterization of unknown binding sites, and the elucidation of ligand-induced conformational changes [20]. The structural 

information is linked with biological activity data after the identification of a ligand-receptor complex [21]. In this manner, 

new steps of the SBDD process incorporate molecular modifications that might increase the affinity of new ligands for their 

binding site. Since ligand binding may cause a substantial conformational change, the aim of the receptor's flexibility is an 

important consideration during the modeling stage. To overcome the flexibility issue, methods like MD and flexible docking 

are helpful [22,23]. 

 

MOLECULAR DOCKING: 

The docking of molecules among the most widely used methods in SBDD, is highly accurate when predicting the shape 

of small-molecule ligand inside the right target binding site [24]. Drug discovery relied heavily on molecular docking 

when the 1980s saw the development of the first algorithms [25]. Investigating key molecular procedures, like as ligands 

binding methodologies and the accompanying intermolecular in connections that stabilize the ligand-receptor 

complicated, is one example of how this may be done easily [26]. Additionally, Molecular docking techniques, which 

provide quantitative estimations of binding energetics, rank docked molecules based on the attachment affinity of ligand-

receptor complexes [26, 27]. A key component of virtual screening is accurately evaluating and assessing the binding of 

docked molecules. Three categories include commonly used scoring functions, as documented in many articles [28, 29]: 

(a) Binding affinity determined by Force field-based functions are used to calculate the target-ligand complex's physical 

atomic interactions. Solvation & entropy terms can also be evaluated. (b) Empirical-based functions employ simpler 

energy terms, such as those for hydrogen bonding and hydrophobic interactions, determined by experimental binding 

affinity data. (c) Knowledge-based functions obtain binding energy using statistical analyses generated from an initial 

group of protein–ligand atom pairs frequencies. Various docking systems and their score functions have been evaluated in 

numerous research to assess how well they can rank and score ligands that attach to a protein target. Despite significant 

advancements in present scoring mechanisms, further work is required to improve hit rating accuracy. The target (ranking 

or score), as well as the ligands series and families of proteins under consideration affect how well scoring functions 

perform [30–33]. When it comes to scoring and ranking compounds, it has been shown to be more advantageous to 

combine the outcomes of two or more scoring systems and create a consensus. Due to its higher accuracy, consensus 

scoring increases the likelihood of finding real possible hits [34, 35]. 

 

DRUG DESIGN BASED ON LIGANDS (LBDD): 

Essential structural and physicochemical characteristics (molecular indicators) that oversee the watched biological activity 

can be found using data from a group of ligands active against a pertinent target (enzyme or receptor) in situations where 

the intended the protein's 3-dimensional structure is unavailable. In this case, it is hypothesized that molecules with 

comparable structures interact with the target and show comparable biological reactions [36], and to create a reliable 

ligand-based screening model, the chemical set should span a broad range of levels (a minimum of four orders of 

magnitude) [37]. Pharmacophore-based approaches and connections between quantitative structure and activity (QSARs) 

are common ligand-based design strategies. The structure of the therapeutic target is unknown when employing the ligand-

based pharmaceutical design technique, and the receptor's homology modeling is used to anticipate the structure. After 

choosing the best-generated model, additional adjustments, including QSAR, were made to identify the best compounds 

exhibiting the greatest potential drug-receptor interactions. However, the biochemical reaction of the target receptor 

depends on a thorough understanding and knowledge of drug metabolism, ADME research, and model stereochemistry. 

Bioisosterism aids in process optimization by improving the lead compounds' pharmacodynamic and pharmacokinetic 

characteristics. Moreover, the safety and improved therapeutic profile of a medicine are greatly dependent on the use of 

retro metabolism-based drug design (RMDD) techniques [38]. 

1. Freely Available: 3 tools (AutoDock, Dock, FRED) 

2. Paid: 7 tools (Gold, Glide, FlexX, LigandFit, ICM, eHiTS, Surflex-Dock) 

 

Search Method Breakdown 

• Genetic Algorithm: - AutoDock, Gold 

• Monte Carlo: -Glide, LigandFit, ICM 
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• Incremental Construction: -FlexX, eHiTS, Surflex-Dock 

• Shape Fitting: -Dock (sphere sets), FRED (Gaussian) 

 

 
Figure. 2: - Molecular Docking Tools and their Availability and Search methods [38]. 

 

RELATIONSHIP BETWEEN QUANTITATIVE STRUCTURE AND ACTIVITY (QSAR): 

The cornerstone of QSAR research is the idea that structural or molecular differences in a group of chemicals are linked to 

changes in bioactivity [39, 40]. This association is used to create novel chemicals and predict their biological characteristics 

theoretically through the creation of a statistical model [41]. The following criteria must be fulfilled in order to generate a 

reliable QSAR model: (a) the biological activity data has to come from a standard the experimental protocol and be 

sufficiently large (at least 20 current compounds) in order for the potency values to be similar as well (b) compounds must 

be appropriately selected for the purpose of training and validation groups; (c) The ligand molecular descriptions must not 

autocorrelate in order to avoid overloading; and (d) the model's predictions must be validated externally and/or internally to 

determine its usefulness and predictivity [42]. When compared the molecular field investigation (CoMFA) [43] is still one of 

the most employed 3D-QSAR methods more than thirty decades after it was first developed. Field adaptation for molecular 

comparison, or AFMoC [46], and the link between spectral structure and activity (S-SAR) [45], Topomer CoMFA [44], and 

analysis of comparative residue interactions (CoRIA) [47] are more modern 3D-QSAR techniques. Despite its noteworthy 

achievements in the field of drug devlopment, 3D-QSAR continues to have several drawbacks that may handle by more 

advanced multidimensional QSAR methods, such as 4D, 5D, and 6D-QA. The development of 4D-QSAR focused on ligand 

orientation and conformation at the target interaction site, while 5D-QSAR considers issues such receptor flexibility and 

induced fit effects. Finally, 6D-QSAR considers the solvation effects, especially its vital role in receptor-ligand interaction 

[48]. Improvements in QSAR model construction and validation have Additionally, improvements in software speed have 

made it conceivable & processing Strength, such as Discovery Bus [49] and AutoQSAR [50]. Both approaches include 

continually adding new artificial intelligence agents and system descriptions, allowing for the objective discovery, updating, 

and validation of Several hundred statistical models with great prediction power. 

 

PHARMACOPHORE MODELING: 

Finding drugs with distinct scaffolds; however, a comparable Pharmacophore screening aims to determine the three-

dimensional arrangement of significant interacting functional groups [51]. The pharmacophore model may incorporate 

binding site information by using the biologically active conformation of possible medications. Furthermore, the 

molecular alignment stage of QSAR modeling studies is when pharmacophore modeling is commonly conducted [52]. 

Programs like Discovery Studio, PHASE [53,54], Ligand Scout [55], and MOE are frequently used for automated 

pharmacophore creation. There has previously been a thorough study of these programs and other methods [56]. Therefore, 

to reduce the number of false positives and false negatives, respectively, it is crucial to develop a framework that has a 

well-rounded sensitivity and specificity. The model may be made less restricted by refining the spatial restrictions in 

regions that are inhabited by inactive molecules. Additionally, characteristics that are inconsistent with active chemicals 

must be eliminated from the model or made optional. Validation tests must be conducted after model refining to assess a 

model's sensitivity and specificity in comparison to an external test set [56]. Sequence-derived 3D pharmacophore 

modelling may be produced without both a set of active ligands and receptor 3D data. Based on the idea that comparable 

receptors can bind with similar ligands, Pharma3D can generate a database of single-feature pharmacophores and 

determine a similar sequence pattern for ligands biomolecular identification in protein families utilizing homologous 

models and 3D crystal structures [57]. This technique has been successfully applied to virtual screening for GPCR (family 

A). According to theory, sequences with similar motifs might distinguish the exact same ligand functionality in a same 

geographic area. The fact that is used to identify the sequence motifs associated with single-feature pharmacophores and 
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create the 3D pharmacophore model. For therapeutic targets with little to no accessible receptor and ligand information, 

this method is appealing despite its drawbacks [57,58]. 

 

"ADMET" STANDS FOR “ABSORPTION, DISTRIBUTION, METABOLISM, EXCRETION, AND 

TOXICITY”: 

The need of identifying leads' ADMET properties early in the drug screening process arose from high attrition rates 

brought on by subpar pharmacokinetic profiles. However, it is not feasible to spend time and money experimentally 

evaluating the pharmacokinetic characteristics of millions of substances. Virtual screening may therefore be used to 

exclude compounds with undesired characteristics and filter hits to quickly assess a lead chemical's drug-likeness prior to 

additional clinical testing [59]. The ADMET filters in silico are used to forecast a compound's drug-like properties and 

are obtained from chemical or molecular descriptors, just like QSAR. The most basic and well-known models are the 

Veber rules [62], The Five Lipinski Rules [60], and for fragments, the rules of Three [61]. We may filter a huge chemical 

database or a list of possible leads using publicly accessible web servers such as ChemBioServer [63] and Free ADMET 

Filtering-Drugs2 (FAF-Drugs2) [64,65]. In addition to displaying compounds and graphing molecular attributes, 

ChemBioServer can also filter compounds according to toxicity, steric clashes, and other chemical characteristics, search 

for substructures, categorize chemicals and recommend a spokesperson for every group [66]. However, FAF-Drugs2 offers 

several pre-defined filters, including the ones listed above, as well as others like the reactive group filter and the central 

nervous system (CNS) filter [67]. The identification of compounds with unfavorable moieties may also be done using 

pharmacophore models made from toxicity-causing inhibitors [68]. Drug metabolism can be addressed with the use of 

reactivity models like those found in SMARTCyp. An application called SMARTCyp, which can be downloaded for free, 

predicts where Phase I CYP450-mediated decomposition is most likely to occur in 2D chemical structures. It uses quantum 

chemical simulations to evaluate the responsiveness of ligand segments and the availability of atom in the molecular 

structure to identify possible sites of metabolism [69]. A similar approach is also used by MetaSite [70] to find possible 

metabolic reactivity sites, but the query input is the compound's 3D configuration. We should bear in mind that the in 

silico ADMET models are more useful for qualitative examination of hits or complex sets as opposed to for precise 

quantitative value prediction. The above techniques have useful for ranking a class of drugs that have been identified for 

evaluation of a certain descriptor and SAR in vitro or in vivo [71]. 

 

COMPUTER-AIDED DRUG DESIGN USING BIOINFORMATICS: 

The National Institutes of Health, also known as NIH, created the Biomedical Information Technology and Science 

Initiative (BISTI) to evaluate the current state of bioinformatics in the United States. According to BISTI, bioinformatics 

has uses in biomedical studies, namely in pharmaceutical development and discovery projects. It was believed that 

bioinformatics will revolutionize the way medications are discovered, developed, tested, and finally sold [72]. The 

specialist field of Using computational methods, computer-assisted drug design (CADD) models drug-receptor 

interactions with one another. Bioinformatics tools and applications are essential to CADD approaches. On the hub's 

support side, Databases, software programs, information management, computer resources, and information technology 

all contribute to bioinformatics infrastructure. Molecular biology, genomics, proteomics, other developing fields (such as 

transcriptomics and metabolomics), and CADD research all heavily rely on bioinformatics techniques [73]. 

 

VIRTUAL HIGH-THROUGHPUT SCREENING (vHTS): 

To create novel therapeutic molecules, pharmaceutical firms are always looking for fresh leads. Virtual high-throughput 

screening is one search technique. If a chemical has a substantial affinity for a protein target, it will be compared to database 

of small molecules compounds in vHTS. A chemical can be taken out of the database for additional testing if there is a "hit" 

with it. On sufficiently big, clustered computers, it is possible to screen several million chemicals in a few days using today's 

processing capabilities. Researchers can save a significant amount of time and money by pursuing a small number of good 

leads for additional development. One excellent illustration of a vHTS compound library is ZINC [74]. 

 

LIGAND-BASED vHTS: 

The observed activities of some known drugs can be utilized to build a pharmacophore model in situations when the target's 

structure is unknown. The latter encapsulates the arrangement of essential characteristics that potential ligands should match, 

such as hydrophobic groups and hydrogen bonds. The most promising applicants from the library can be chosen using this 

approach as a template [75,76]. This approach may also be employed as a filter prior to applying a structure-based vHTS, 

resulting in a final docking of just 1–10% of the original database [77]. 

 

STRUCTURE-BASED vHTS: 

Docking methods are most likely to be applied most simply in structure-based vHTS. It involves utilizing a molecular 

docking tool to identify the protein target's binding mechanism for a comprehensive library of real or hypothetical 

substances [78–80]. Approximations of the binding free energy or associated affinity of the drug are made using the bound 

conformations. The most promising molecules are then kept for additional experimental examination. Docking 

applications for vHTS that are most frequently used include DOCK, FlexX, Glide, GOLD, and AutoDock. A few minutes 
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or less is the maximum amount of time that can be spent on each docking because the libraries employed in this method 

range in size from hundreds of thousands to a few million compounds. The size of the database is determined by a trade-

off among the total amount of compounds that can be analysed in a reasonable amount of time and the required coverage 

of its chemical space. Conformational sampling is consequently relatively restricted, and vHTS suffers from many false 

negatives despite the continuous advancements in computer technology. Although a great deal of money has been spent 

on HTS and vHTS, and there have been several successful trials [81–84], the results in terms of novel compounds entering 

the clinic may be viewed as relatively unsatisfactory [85,86]. 

 

DEEP LEARNING'S GROWTH IN COMPUTER-ASSISTED DRUG DISCOVERY: 

Even though DL, which is, or deep learning is not a novel approach— The situation became used for decades in language 

and image processing—its use in drug development initiatives has only just been apparent [87]. To manage the 

computationally costly computations involved in deep learning, this has been expedited using GPUs [88]. By employing 

several processing layers, or neurons, to generate predictions from enormous sets of multi-dimensional data, DL goes 

beyond conventional machine learning techniques [89]. DL models may be trained using biological data for various CNS 

targets from open-source datasets like ChEMBL [90], PubChem [91], and MolData [92]. Pharmaceutical companies also 

frequently employ internal databases from experimental research [93]. While there are many other kinds of deep learning 

architectures, multi-tasking learning (MTL), long-short-term memories (LSTM), recurring neural networks (RNNs), and 

convolutional neural network networks (CNNs) are the most often used in drug design and discovery. Therefore, this will 

be the review's focus. Schmidhuber et al. [94] and Le Cun et al. [89] offer thorough analyses of all forms of deep learning 

and the underlying theories behind them. Due to their architecture's resemblance to the visual cortex, CNNs are most 

frequently utilized in image recognition [95]. CNNs use a feature map that is produced from convolutional layers to gather 

information about whether features are present or absent in various picture regions. CNNs have an awareness of space 

advantage compared to alternative designs for DL because of these feature maps. The model's nonlinearities and variable 

interactions are then taken into consideration by using A linear activation function that has been corrected (ReLU). To 

avoid model overfitting, the data collected in the layers will be compiled by a pooling layer. To link the output to the 

hidden layers, these procedures will be carried out several times using at least one completely linked layer [96]. With a 

greater accuracy over other forms of Deep neural network technology and learning from machines (DNN) techniques that 

rely on molecular fingerprints, CNNs are utilized in drug design to take characteristics out of molecular graphs in two or 

three dimensions [97]. The molecular graphs' features may be utilized to determine the optimal binding positions and 

affinities of ligand-protein complexes [98,99] or to forecast pharmacokinetic characteristics [97]. To find novel the disease 

of Alzheimer's therapy with inhibitors of AChE, graphic CNNs were used, using pictures of molecular fingerprints as the 

input. Three distinct machine learning methods: XGBoost, random forest, and linear regression—were surpassed by the 

deep learning model. Out of two million tiny molecules in the library, two hit compounds were found. The resultant leads 

showed promise as possible medications as they could pass across the blood-brain barrier (BBB) And performed better in 

vitro than galantamine [100]. 

 

APPLICATIONS TO NEUROLOGICAL AND PSYCHIATRIC CONDITIONS: 

Drug design now requires the use of computational approaches. Recent instances have shown how these methods may 

speed up the drug development process and cut down on the time and cost of clinical trials and laboratory testing. 

Additional examples are included in the text below. It offers an overview of how CADD approaches are being used to 

produce medications that target neurological and mental diseases. The most common disease target identified by our 

literature search was Alzheimer's disease; several CADD trials employing a wide variety of pharmacological targets are 

detailed below. The search for novel therapies is critical since Over 55 million individuals worldwide suffer from 

Alzheimer's disease, and the WHO estimates that figure will nearly double in the next 30 years [101]. This requirement is 

best shown using CADD research in Alzheimer's disease applications. Targets like α7 nAChR were chosen to enhance the 

therapy choices for individuals with schizophrenia, which was the most prevalent mental illness target in the literature 

study. It is crucial to remember that, although having identical target proteins, many of the diverse treatment areas covered 

here have radically different clinical phenotypes. It is outside the purview of this work to discuss the connection between 

common disease genotypes and different clinical presentations, which can be partially explained by epigenetic variables 

[102]. 

 

ALZHEIMER’S DISEASE: 

To discover new Alzheimer's disease therapies, a 3D-QSAR model with multi-target functionality was developed targeting 

the serotonin transporter (SERT) and acetylcholinesterase (AChE), GSK3β, or glycogen synthase kinase, and beta-

secretase 1 (1 BACE1) [103]. The QSAR model was constructed using both A model of a neural network that is artificial 

(ANN) and multilinear regression utilizing IC50 data from ChEMBL [106]. FQSARModel was used to create molecular 

descriptors, then the 2D ligand structures were converted to 3D using OpenBabel. ANN models were chosen for use in 

virtual screening as it was evident during model validation that they performed better. The ZINC (biogenic) database's 

more than 20,000 chemicals docked against each of the four proteins. 57 substances having favorable a binding agent 

effectiveness & therapeutic characteristics were evaluated against the QSAR models after docking in both Autodock and 
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Glide. According to the models, there was potential for five ligands to target three out of the four proteins, at least. (1, 

Figure 3A) ZINC4027357. was one drug that showed both AChE and BACE1 inhibition. At the chosen potencies, none 

of the hits exhibited inhibitory qualities against GSK3β or SERT. 

 

 
Figure. 3: - The molecular makeup of lead compounds with the highest reported activity in vitro from representative 

papers are covered in the following section. It is suggested that the molecules might be used in treatments for 

schizophrenia (D), neuropathic pain (C), Alzheimer's syndrome (A) and Parkinson's disease (B) [7]. 

 

THE DISEASE PARKINSON'S: 

Examining links among licensed drugs and Parkinson's disease-related proteins, drug repurposing research sought to 

develop novel therapies for the condition. The accuracy of the CNN model was 91.57%, which was better than other 

benchmark techniques (such as DTINet and deepDTnet). The CNN model also fared better than conventional machine 

learning methods. Using molecular docking, to ascertain if these ligands and the desired proteins interacted favorably, the 

top ten compounds from the unidentified specimens were evaluated against the target protein 5-hydroxytryptamine 

receptor 2A (5HTR2A). Three of the 10 ligands exhibited comparable binding energies when pimvanserin was used as a 

positive control; This most promising of these was topotecan (3, Figure 3B), an inhibitor of topoisomerase [104]. To find 

chemicals that resemble piperine and medications that target these targets, a different deep learning method was developed 

employing a deep neural network design. The accuracy of the model was 87.5%. To uncover comparable structures, 57,423 

compounds from the PubChem database and the databases ZINC databases were subjected to a similarity search based on 
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piperine. Five of the 101 compounds that were chosen for additional study via bonding in auto-docking 4.0 were suitable 

for AMBER platform MD simulations. According to the MD and docking investigations, the additional ring present in the 

best-performing molecules (5, Figure 3B) likely helps create the bonds of hydrogen in the active site, enhancing their 

ability to inhibit Monoamine-oxidase A as well as B (the MAO-A and MAO-B) [105]. Schrodinger's Maestro software's 

Glide and Prime modules were used to do a Over 1.6 million of small molecules were docked against a homologous model 

of LRRK2. A total of twenty-eight high-performing compounds were acquired for biological analysis. LY2019-005 and 

LY2019-006, two small compounds with unique characteristics, were discovered to be able to pass through the blood-

brain barrier. That binding mechanism of these ligands was examined using MD simulations. The most effective ligand 

was LY2019-005 (6, Figure 3B), It showed the two the wild-type strain and G2019S mutant enzymes' nanomolar IC50 

values. Given the neurotoxic potential associated with the G2019S variant of LRRK2, nanomolar IC50 is particularly 

important [106]. 

 

NEUROPATHIC PAIN: 

To prevent bias, the biological data of 180 sigma-1 receptors (S1R) inhibitors were chosen from the scientific literature 

and split into 4:1 training and test sets. After then, the randomization process was carried out fifty times. MOE software 

was utilized to generate 206 molecular descriptors, and principal component analysis (PCA) was utilized to reduce their 

dimensionality. Using the partial least squares approach, A 3D-QSAR model based on atoms was produced. Its final model 

had an R2 of 0.92 and an RMSE of 0.29, both of which are indicative of a model with strong predictive capabilities. To 

provide structural details of the binding location to the 3D-QSAR model, an energy-based pharmacophore was also 

created. This was employed in the Schrödinger's Glide-developed virtual screening trials to make sure the ligands were 

oriented correctly for the binding site. Following pre-filtering procedures, 1935 FDA-approved drugs were selected from 

the Drug Bank dataset using the pharmacophore model. Next, each ligand's best-fitting conformer was screened using the 

3D-QSAR model. Using a radio–ligand binding experiment, twelve of the best-performing ligands that lacked biological 

affinity data for S1R were subjected to further in vitro testing. Phenyltoloxamine and diphenhydramine, two drugs, 

demonstrated 66 and 70% inhibition at 1 µM, respectively. Additionally, diphenhydramine (7, Figure 3C) has been 

reported in the literature to be an adjective analgesic [107]. To find novel binding sites and potential therapies for 

neuropathic pain, A highlight on the target sequence (HoTS) model developed using deep learning was used to scan the 

purinergic P2X3 sequence of proteins [108]. Following the identification of possible binding sites using the DL model, to 

verify their feasibility, the volume of these binding sites was assessed using simulations using MD in the CDOCKER 

programming package. Utilizing the BIOVIA program's known antagonist's binding mechanism and its variations, a 

pharmacophore model was created for each of the four newly discovered binding areas. The pharmacophore model was 

used to screen more than 97,000 chemicals. After that, 2346 ligands in all were docked to help prioritize them for in vitro 

evaluation; 500 of them were chosen for experimental confirmation. Sixteen compounds with low micromolar IC50 values 

and unique structures were found. The most effective lead chemical was compound 8 (Figure 3C). 

 

SCHIZOPHRENIA: 

Using 159 sigma 2 receptor (S2R) inhibitors that have been documented in the literature, a 2D-QSAR model was created. 

Each ligand's molecular descriptors were created using MOE software to create a QSAR model. Four methods were 

produced: the authors' own GreedGene algorithm, Lasso, genetic algorithm (GA), and stepwise regression. GreedGene 

was chosen for screening because it performed the best, with an R2 of 0.56. Glide was also used to create a pharmacophore 

model for virtual screening. More than two thousand small compounds were screened through the Drug Bank database 

using the QSAR model, which has a pKi cut-off of 5.5. In contrast to the pharmacophore approach, shape-based screening 

was performed on the top 120 ligands after screening. Both siramesine-like ligands and compounds with a scaffold 

consisting of piperazine, which or tetrahydroisoquinolinyl molecules were kept for in vitro testing. The strong affinity for 

S2R binding of these scaffolds is well recognized. This scaffold was found in 30 compounds, which were deemed potential 

leads. Three FDA-approved medications, nefazodone, cinacalcet, and pimozide, were found to have nanomolar binding 

affinity values after six molecules completed biological testing; nefazodone (9, Figure 3D) was the most powerful of the 

three [109]. Using eleven α7 nAChR agonists from the literature, a pharmacophore was created. The pharmacophore was 

made up of one positively ionized group, a hydrophobic center, and a hydrogen bonding area. Additionally, a recursive 

partitioning model was employed to lower the quantity of false positives. The ChemDiv database was virtually screened 

against these two models. Ten of the 13 ligands that were chosen for in vitro evaluation after filtering to make sure there 

were no violations of the Lipinski criterion showed inhibitory effects. T761-0184's strong potency led to its selection for 

more research. To determine the binding mechanism for structural optimizations, this ligand was made to conform to an 

α7 nAChR homology model. Out of the 51 optimized structures, B10, which is (10, Figures 3D) was the most subtype 

specific for α7 nAChR. Additionally, B10 was one of the most interesting ligands with an IC50 threshold of 5.4 µM [110]. 

 

CNSMOLGEN: A DE NOVO CNS DRUG DESIGN APPROACH USING DEEP LEARNING: 

A revolutionary molecular generation model called CNSMolGen was created to create medications for the central nervous 

system (CNS) from the ground up. The model creates novel chemical compounds with CNS therapeutic characteristics 

using a set of bidirectional recurrent neural networks (BiRNNs). More than 90% of novel compounds with CNS 
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therapeutic characteristics that might be synthesized were produced by the previously taught model. To evaluate the 

model's capacity for CNS medication optimization, transfer learning was carried out on tiny datasets with biological 

activities. Particularly when working with minimal datasets, the model showed notable efficacy in producing CNS 

medications. SSRI was used as an example to validate the use of CNSMolGen in the real production of CNS medication 

molecules. 129 of the 215 compounds that the model produced had strong molecular docking binding affinities. Future 

CNS drug development will be given a fresh boost by this model's performance, which shows its promise in CNS drug 

design and optimization [111,112]. 

 

FUTURE PROSPECTIVES 

In the field of the CNS, or central nervous system, drug development, changing because of the confluence of deep learning 

(DL) and computer-aided drug design (CADD). This strategy seeks to address issues including rising prices and high 

development failure rates. Advanced multi-omics integration for targeted therapies, real-time drug screening and 

optimization, the development of novel therapeutic targets through deep learning models, cross-disciplinary collaboration, 

drug repurposing and precision medicine, ethical and regulatory adaptations, global collaborative networks, improved 

predictive modeling for long-term therapy efficacy, AI-driven drug design for neurodegenerative diseases, and quantum 

computing for drug discovery are some of the major opportunities for the future. These developments will speed up drug 

discovery timelines, enhance the precision of molecular docking, predictive modeling, and the design of highly precise 

CNS-targeted medications, and allow the creation of customized treatments based on each patient's own molecular profile. 

 

CONCLUSION 

CNS drug discovery is being revolutionized by the combination of Deep Learning (DL) and Computer-Aided Drug Design 

(CADD), which is overcoming rising costs and high development failure rates. Therapeutic options for neurological and 

psychiatric illnesses are being identified and optimized more quickly because to CADD methodologies like LBDD& 

SBDD. Its capacity of machine learning to produce extremely precise CNS-targeted medications is demonstrated by the 

CNSMolGen model, which makes use of BiRNNs. Targeted, customized treatments based on the molecular profiles of 

individual patients will result from the combination of multi-omics data with AI-driven drug development. Real-time drug 

screening will increase the effectiveness of clinical studies and cut down on the time needed to find viable medication 

candidates. Advances in precision medicine, medication repurposing, and emerging novel therapeutic targets will open 

new treatment options for illnesses for which there are now no viable treatments. Quantum computation has the potential 

to revolutionize the process of creating drugs since it allows for the simulation of chemical interactions at the atomic level. 
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